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	       ABSTRACT
Agriculture is the most important sector and the backbone of a developing country’s economy. 
Accurate crop yield prediction models can provide decision-making tools for farmers to make 
better decisions. Crop yield prediction has challenged researchers due to dynamic, noisy, 
non-stationary, non-linear features and complex data. The factors that influence crop yield 
are changes in temperature and rainfall, plant disease, pests, fertilizer, and soil quality. The 
paper discusses the factors affecting crop yield, explores the features utilized, and analysis 
deep learning methodologies and performance metrics utilized in crop yield prediction.

INTRODUCTION

The most important sector in growing nations like India is 
agriculture. In addition to food, agriculture provides raw 
materials for many industries, like textiles, jute, sugar, 
tobacco, and vegetable oil. The importance of agriculture 
can be understood from the fact that almost 60% of the 
employment in India is related to agriculture, contributing 
to 17% of the gross domestic product in India. Crop growth 
monitoring and yield estimates are essential for a country’s 
economic success. It immediately influences international 
and national economies and plays a significant role in food 
security and management. Farmers need an effective crop 
yield prediction method to determine what crop to grow in a 
particular field and when to grow that crop. Yield prediction 
used to be done by considering a farmer’s previous experience 
with a specific field and crop (Nevavuori et al. 2019). When 
making decisions about agricultural risk management and 
predicting the future, it is essential to have precise knowledge 
about crop production history. Many factors influence crop 
yield, including plant diseases, environmental factors, soil 
quality, genotype, insect infestations, water quality and 
availability, and harvest activity planning (Elavarasan & 
Vincent 2020). Plant diseases are a worldwide hazard to 
food security and management, but they can be incredibly 
destructive to small-scale farmers who rely on healthy crops 
for their income (Chu & Yu 2020). When these factors are 
not adequately monitored and managed, they can pose a 

substantial risk to farmers (Saravi et al. 2019). The main aim 
of predicting the yield of crops is to increase crop production. 
Many well-developed models are used to attain this goal 
(Cao et al. 2021a). Recent developments include crop yield 
prediction models that use deep learning and machine 
learning techniques to increase crop productivity. As a part 
of artificial intelligence, machine learning algorithms, and 
deep learning algorithms appear to have improved yield 
prediction and the ability to evaluate large amounts of data.

Machine learning algorithms are a subset of AI programs 
that give more accurate results in software applications 
without being specifically designed to do it (Rashid et al. 
2021). An ML model is established with a few parameters 
and learning. Learning is executing a program to optimize the 
model’s parameters using training data or prior experience 
(Paudel et al. 2021). The model could be predictive to make 
future predictions, descriptive to learn from data, or both. 
Due to their efficiency and prediction accuracy, many ML 
algorithms have been used to handle complex problems such 
as forecasting, fault detection, resource management, pattern 
recognition, and robotics in these highly dynamic times. 
Reinforcement learning, unsupervised ML, unsupervised 
ML, and semi-supervised ML are the four main approaches 
of ML algorithms. ML algorithms can discover knowledge 
from datasets by identifying patterns and correlations for 
improving crop yield predictions (Van Klompenburg et al. 
2020). Decision support tools are essential for crop yield 
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prediction to decide which crops to cultivate and what to 
do with them while growing. Recently, ML approaches 
such as decision trees, stepwise multiple linear regression, 
multivariate regression, applied decision trees, and weighted 
histogram regression have been used in yield prediction 
(Abbas et al. 2020). ML’s significant limitations are 
difficulty finding optimal features, limited learning from 
data, and low prediction efficiency of crop yield. So, DL 
(deep learning) algorithms are used to estimate the yield.

A deep learning algorithm is part of an ML algorithm 
used to perform complex computations on large volumes 
of data in sophisticated ways (Muruganantham et al. 2022). 
A neural network is made up of artificial neurons called 
nodes. Nodes are arranged as input, hidden, and output 
layers. Each node receives information in the form of inputs 
from data. The inputs are multiplied with random weights, 
adding a bias to the results. Finally, activation functions are 
used to decide which neuron should fire. DL algorithms 
can automatically learn hidden patterns from the data and 
construct more efficient decision rules. In DL, a model learns 
to perform tasks directly from sound, text, or pictures and 
can achieve remarkable precision. The DL process consists 
of two main steps: testing and training. The training phase 
can be used to label large volumes of data and identify 
their similar features. As a result, the model extracts the 
features and contributes to increasing the accuracy of the 
results. The model uses its gathered knowledge to render 
unexposed data and labels during testing. DL algorithms 
produce more accurate predictions than traditional ML 
algorithms (Elavarasan & Vincent 2021). DL is used in 
various applications like crop yield prediction, natural 
language processing, fraud detection, visual recognition, 
entertainment, news aggregation and fraud news detection, 
self-driving cars, virtual assistants, and healthcare. Due 
to many complex factors, crop yield prediction has been 
challenging for researchers. For example, environmental 
factors like weather data have nonlinear and non-stationary 
data, which is difficult to estimate.

The DL algorithms handle the spatiotemporal dependency 
in a dataset in an effective manner (Tian et al. 2021a). 
Many studies have used DL methods such as RNN, CNN, 
LSTM, MLP, and autoencoders to predict crop yield. The 
DL algorithms can identify the important features of data 
without the need for handcrafting input data. The vanishing 
gradient problem may occur in deeper networks, which 
can be addressed by a Long Short Term Memory network 
(Liu et al. 2022). Other techniques like stochastic gradient 
descent, dropout, and batch normalization have been created 
to increase the performance and accuracy of DL models.  DL 
algorithms can improve performance, but there is a lack of 
literature on the issues of applying DL techniques to estimate 

crop yields. Crop yield prediction depends on the data source, 
crop type, and DL algorithm.

MATERIALS AND METHODS

There are two steps to the bibliographic analysis in crop 
yield prediction: (a) to collect papers related to crop yield 
prediction and (b) to analyze and review the papers in detail. 
The resources for this study were collected from IEEE 
Xplore, Science Direct, Springer, MDPI, Wiley, and IOP 
scientific databases. The following query [“deep learning”] 
AND [“yield prediction”] OR [“yield estimation”] is used 
as a search keyword to filter out papers referring to deep 
learning and the agricultural domain. From this effort, a 
total of 48 documents were found for analysis and review. 
The entire process of this review is based on the research 
questions. The significant role of research questions is to 
analyze and explore all the dimensions of the studies. The 
following 5 research questions are listed in this study.

	 •	 RQ1: What are the features used for crop yield 
prediction?

	 •	 RQ2: What are the data sources used to predict crop 
yield?

	 •	 RQ3: What kinds of crops are used in yield prediction 
using deep learning algorithms?

	 •	 RQ4: What deep learning approaches have been applied 
to predict crop yield?

	 •	 RQ5: What are approaches used to evaluate the 
performances of deep learning algorithms?

Factors Affecting Crop Yield Prediction

Crop yield is influenced by multiple factors like soil 
fertility, water availability, climatic conditions, plant 
diseases, and pets are the most critical factors influencing 
crop productivity. When these factors are not monitored 
and handled correctly, they can cause considerable risk to 
farmers. Soil fertility is soil’s ability to supply nutrients 
necessary for a crop’s optimal growth (Elavarasan & Vincent 
2020). A total of 17 nutrients are required for healthy crop 
growth. Each nutrient is equally necessary to the plant’s 
development but in varying proportions. Due to these 
variations, the critical elements have been grouped as key 
sources of micronutrients such as Mo, Cl, Fe, Mn, B, Ni, Cu, 
and Zn and macronutrients like O, P, C, N, K, S, H, Mg, and 
Ca (Elavarasan & Vincent 2021). Plant nutrients include root, 
leaf, fruit development, chlorophyll, protein and hormone 
production, and photosynthesis. Because soil fertility is a 
primary source of these nutrients for plants, nutrient content 
in soil can significantly impact crop yield. Any one of these 
nutrient deficiencies can reduce crop production by affecting 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


581A SURVEY ON DEEP LEARNING BASED CROP YIELD PREDICTION

Nature Environment and Pollution Technology • Vol. 22, No. 2, 2023This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

the growth factor of the crop. The amount of water and crop 
yield is strongly interrelated.

Water significantly impacts crop productivity and is 
considered the world’s most important agricultural input. 
Throughout a plant’s lifespan, it requires large volumes of 
water to perform processes like photosynthesis, translocation, 
utilization of mineral nutrients, respiration, cell division, 
and absorption. Both excessive and insufficient water has a 
significant impact on yield quantity and quality. When too 
much water is on a farm, the roots can decay, and the crops 
will not get sufficient oxygen from the soil. When there 
is insufficient water on a farm, the plant does not receive 
the necessary nutrients. As a result, both water scarcity 
and excess water on fields can equally impact crop growth 
and development, yield, and quality. Solar radiation and 
temperature are other essential elements affecting crop 
growth, development, and yield. All plants have maximum, 
optimum, and minimum temperature limits (Jeong et al. 
2022). High temperatures influence plant growth in a 
variety of ways. When the temperature rises, the activities of 
photosynthesis and respiration increase. When temperatures 
rise above a certain threshold, the two processes become 

imbalanced, affecting mineral nutrition, pollen formation, 
and shoot growth, resulting in a reduced yield. Low 
temperatures impact crop growth characteristics, including 
cell division, water transport, survival, photosynthesis, 
growth, and yield.

When an organism infects a plant, it disturbs its normal 
growth tendencies. Symptoms might range from minor 
discoloration of plants to the plant’s death. Common plant 
diseases include blight, gall, canker, leaf curl, root rot, 
chlorosis, leaf spot, stunting, wilt, and powdery mildew. 
Microorganisms that can damage and cause plant diseases 
include bacteria, fungi, and viruses. Crop yield is also 
influenced by several soil-borne and above-ground insect 
pests. Pathogens negatively impact crop yield and soil quality 
and can harm plants in various ways (Lee et al. 2019). Aside 
from causing direct damage to crops, pests can also harm 
plants in other ways, such as by destroying plant roots, which 
affects the plant’s ability to absorb water and nutrients.

Classification of Features Used in Crop  
Yield Prediction

The features employed with the DL approaches used in the 
 

 

 

 

Classification of Features 

 
   Weather Data 
 

Water Information 
 

 
 Soil Information 
 

Solar radiation, vapor pressure, Maximum temperature, Precipitation, Rainfall, 
Minimum temperature, Solar radiation, Daily minimum air temperature, Temperature, 
Wind speed,  Daily maximum air temperature 
 

Wet soil bulk density, Snow water equivalent, Dry bulk density, Soil maps, Clay 
percentage, Soil type, Upper limit of plant available water content,  Top soil depth, 
Lower limit of plant available water content, Organic matter percentage, Hydraulic 
conductivity, Sand percentage, pH 
 
Saturated volumetric water content, Groundwater premagnesium , Groundwater, 
Groundwater, Groundwater postsodium, Groundwater prepotassium , Groundwater 
prechloride 
 

Nutrients 
 

Satellite and Aerial 
Data 

LAI, Green chlorophyll index , Red-edge chlorophyll index, Normalized difference 
vegetation index , Green normalized difference vegetation , Green-red vegetation 
index , Normalized difference red-edge , Simplified canopy chlorophyll content 
index, The enhanced vegetation index , MCARI/OSAVI,  TCARI/OSAVI, Wide 
dynamic range vegetation index , RGB Canopy Height (m) CH, Vegetation fraction 
(%) , TIR (Therm. Info.), Normalized relative canopy temperature index, Gray-level 
co-occurrence matrix, EVI, NDVI 

Magnesium, Manganese, Nitrogen, Organic carbon, Phosphorus, pH-value, 
Potassium, Sulphur, Zinc, Boron, Calcium 

Disease Data 

Others 

Yield Data 

Synthetic images 

Disease1, Disease1 Infectious, Disease2, Disease 2 infectious 

Winter yield data, summer yield data 

Fig. 1: Features categorization for crop yield prediction. 
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and topsoil depth were grouped with soil data in one category. 
Weather-related features like maximum temperature, solar 
radiation, minimum temperature, vapor pressure, rain, solar 
radiation, temperature, wind speed, precipitation, daily 
maximum air temperature, and daily minimum air temperature 
were grouped with weather data. Disease data, yield data, 
and synthetic images were placed under one group with the 
name of others. Features and datasets used in the articles to 
predict crop yields to answer research question two (RQ2) are 
displayed in Table 1.

The distribution of the data features of the group in 
the reviewed articles is shown in Fig. 2. The data features 
related to satellite and aerial data and weather conditions 
were commonly used in most articles. Satellite images 
are less expensive and more accessible. It is easy to 
scale across a large area (Petersen 2018). The MODIS 

articles were analyzed and presented to answer research 
question one (RQ1). The massive amount of data features 
employed in yield estimation better understanding of the 
features. The features were grouped into six categories: 
weather data, soil information, water information, satellite 
and aerial data, nutrients, crop disease data, yield data, and 
others. The categorization of features is shown in Fig. 1.

For example, all data features related to satellite and aerial 
data were grouped, and data features like saturated volumetric 
water content, groundwater magnesium, groundwater sodium, 
groundwater potassium, and groundwater chloride were placed 
in a group with water information. Soil-related features like wet 
soil bulk density, snow water equivalent, clay percentage, dry 
bulk density, the lower limit of plant-available water content, 
an upper limit of plant-available water content, organic matter 
percentage, hydraulic conductivity, soil maps, pH, soil type, 

Table 1:  Summary of features utilized in reviewed articles.
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Alibabaei et al. (2021) Climate data from the agricultural weather station in Portugal, 
Fadagosa dataset.

√ √

Bhojani & Bhatt (2020) wheat yield data from the Directorate of Agriculture, Gandhi 
nagar, weather datasets from the Agro meteorology Department, 
Gujarat

√ √

Cao et al. (2021a) MODIS dataset, TerraClimate dataset √ √ √

Cao et al. (2021b) Agricultural Statistical Yearbook, ChinaCropPhen dataset, CSIF 
dataset, TerraClimate datasets, Soil particle-size distribution 
dataset

√ √ √ √

Chu & Yu (2020) Rice yield data, meteorology data in the Guangxi Zhuang 
Autonomous Region, China

√ √

Elavarasan & Vincent 
(2020)

Climatic data from the Indian meteorological department using 
the METdata tool.

√ √ √ √

Elavarasan & Vincent 
(2021)

Meteorological data were collected using the METdata tool from 
the website of the Indian Meteorological Department.

√ √ √ √

Gao et al. (2020) MODIS Dataset, climate data from the Daily Surface Weather 
and Climatological Summaries (DAYMET) databases, and 
soybean and maize yields from the USDA Quick Statistic 
Database.

√ √ √

Jeong et al. (2022) MODIS, COMS MI, RDAPS, IRRI Paddy Map √ √ √

Jiang et al. (2020) MODIS Dataset √ √ √

Khaki & Archontoulis 
(2020)

USDA-NASS, Daymet, Gridded Soil Survey Geographic 
Database 

√ √ √ √

Khaki & Wang (2019) Syngenta Crop Challenge dataset in the US and Canada spanning 
8 years of data.

√ √ √

Khaki et al. (2021a) yield performance dataset between 2004 and 2018 in US Corn 
Belt, Satellite data- MODIS( MOD09A1 and MYD11A2) crop-
specific land cover data-  USDA-NASS cropland data layers

√ √ √ √

Lee et al. (2019) PlantVillage dataset √ √ √

Liu et al. (2022) satellite-based SIF Dataset, MODIS Dataset, TerraClimate 
Dataset

√ √ √

Table Cont....
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Ma et al. (2021) MODIS Dataset, Parameter elevation Regressions on Independent 
Slopes Model dataset, Soil Survey Geographic Database 

√ √ √ √

Nevavuori et al. (2019) Temperature data from the Finnish meteorological department, 
Sentinel – 2A Data, UAV images. 

√ √ √

Nevavuori et al. (2020) Meteorological data from the Finnish meteorological institute for 
the Pori area, UAV images

√ √ √

Qiao et al. (2021)  Satellite data- MODIS( MOD09A1 and MYD11), Yield data 
collected from Agricultural statistic yearbook 

√ √

Rahnemoonfar & 
Sheppard  (2017)

Synthetic Image √

Sagan et al. (2021) WorldView-3 and PlanetScope satellite data √ √

Saravi et al. (2019) DSSAT weather file √ √ √

Schwalbertet al. (2020) MODIS dataset, soybean yield data from IBGE √ √ √

Shahhosseini et al. 
(2021)

corn yields data from USDA National Agricultural Statistics 
Service

√ √ √

Sun et al. (2019) MODIS SR data MODIS LST data Daymet Weather Data √ √

Teodoro et al. (2021) multitemporal–multispectral dataset √

Tian et al. (2020) MODIS Dataset. √ √

Tian et al. (2021a) MODIS products (d60-d152), wheat yield data  from the Shaanxi 
Rural Yearbooks  data, meteorological data  from the China 
Meteorological Administration website

√ √ √

Yang et al. (2019) BBCH65 Dataset √

Zhou et al. (2021) At late vegetation, early reproductive and late reproductive 
growth stages of RGB and multispectral images

√ √

(Moderate Resolution Imaging Spectroradiometer) dataset  
contains satellite and aerial data used in most reviewed 
articles for crop yield prediction. Low-resolution  
MODIS pixels decrease the quantity of data that needs to 
be processed, making the system less expensive and more 
efficient.

      
  

 

32%

28%

17%

13%

7%

3%
Satellite and Aerial Data

Weather Data

Others(Yield Data, Disease
Data, Synthetic Image)
Soil Information

Water Information

Nutrients

Fig. 2: Distribution of Data features group in the reviewed articles.

Crop Used in Yield Prediction Using Deep  
Learning Approaches

DL techniques are used to estimate crop yield for many 
different crops. The crops employed in the deep learning 
approaches used in the articles were analyzed and presented 
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to answer research question three (RQ3). Different crops 
such as Wheat, Corn, Soybean, Paddy or Rice, Tomato, 
Maize, Barley, Apple, Citrus fruit, Cotton, Melon, Orange, 
Strawberry, Potato, and Oats were investigated in the 
reviewed papers. The distribution of different types of 
crops used in the reviewed articles is displayed in Fig. 3. 
The yield of crops such as soybean, rice, wheat, and corn 
was predicted using a DL algorithm. Corn is the most 
common crop whose yield can be predicted widely using DL  
techniques.

Deep Learning Algorithms in Crop Yield Prediction

The deep learning algorithm plays a very important role in 
crop yield prediction. The DL approaches like CNN, RNN, 
LSTM, and Autoencoder were investigated in the review 

paper. The advantages of these algorithms were listed to 
answer the research question (RQ4).

Convolutional Neural Network (CNN)

A CNN is made up of many artificial neurons stacked on 
layers. CNN has multiple layers like the pooling layer, 
convolution layer, and fully connected layer (Fig. 4). The 
dataset is processed, and features are extracted using the 
Layers of CNN (Wang et al. 2020). The convolution layer 
uses many filters to perform the convolution operation 
and create a feature map. The Rectified Linear Unit layer 
performs the operations of a feature map on elements. The 
pooling layer down-samples the rectified feature map derived 
from the convolution layer to minimize its dimensions and 
smoothens the resulting two-dimensional arrays into a 
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Fig. 3: Distribution of different kinds of crops used in reviewed articles.

 
Fig. 4: Architecture of CNN.
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continuous, long, single-linear vector. The fully connected 
layer classifies and identifies the images using the flattened 
matrix from the pooling layer. The filter counts, size of filters, 
type of padding, and stride are the design parameters for 
CNN. A filter is a weighted matrix to perform convolution 
operations on data. Padding is a technique for preserving 
the input dimension by adding zeroes. The stride refers to 
how much the filter is moved. Lenet, Alexnet, Googlenet or 
Inception, and VGGNet are CNN variants. CNNs are widely 
used for identifying satellite images, processing medical 
images, forecasting time series, detecting anomalies, and 
predicting crop yield. CNN can analyze data in various array 
formats, including one-dimensional, two-dimensional, and 
three-dimensional data. The CNN captures and explores time 
and spatial dependencies in weather and soil data (Wang 
et al. 2020). It efficiently finds salient features within data 
compared to traditional feedforward neural networks.

The different variants of CNN are 3D-CNN, Deep CNN, 
RCNN, VGGNet, and YOLO. In 3D- CNN architecture, 
the kernels move over three dimensions, height, length, 
and depth, to produce three-dimensional activation maps. 
In 3D CNN, convolutional layers perform 3D convolution 
operations (Nevavuori et al. 2020). Deep CNN is another 
type of CNN widely used in images and videos for pattern 
identification. Deep CNNs have evolved from ANN, using 
a three-dimensional neural pattern inspired by the visual 
cortex of animals. Deep CNN networks are mainly used in 
recommendation systems, natural language processing, image 
classification, and object detection. The R-CNN is a type of 
CNN architecture created primarily for object detection 
problems (Chen et al. 2019). To give a better solution to 
the detection problem, RCNN forms a bounding box over 
the object present in the image and then recognizes which 
object is present in the image. R-CNN has several variations, 
including Fast R-CNN, Mask R-CNN, and Faster R-CNN. 
An RPN is added to Faster R-CNN to interpret features 
retrieved from CNN. Researchers from the Visual Graphics 
Group at Oxford introduced the VGG Network.

The pyramidal structure of this network is defined by 
huge bottom layers closer to the images and deep top layers. 
It was created using a 16-layer deep CNN architecture. In 
the VGG, convolutional layers are followed by pooling 
layers. The narrowing of the layers is the responsibility of 
the pooling layers. It achieves its performance by using 3x3 
convolutions and training on four GPUs for over two weeks. 
Excellent architecture for benchmarking on a specific activity 
and VGG pre-trained networks are frequently used for a 
range of applications because they are freely available on 
the internet are the advantages of VGG (Khaki et al. 2021b). 
The YOLO algorithm is used to detect objects in real-time. 

It divides the image into defined bounding boxes and uses 
a parallel recognition algorithm to determine which object 
class each box belongs to. After detecting these classes, 
it automatically merges these boxes to build an optimal 
bounding box around the objects. The advantages of YOLO 
are accuracy and speed (Lu et al. 2022).

Nevavuori et al. (2019) created a model using deep 
CNN to detect crop and weed, evaluate biomass, and 
predict wheat and barley crops yield using multispectral 
data. The Convolutional Neural Network algorithm 
produces outstanding results in object detection and image 
classification tasks. The results show that CNN models 
can estimate yields with greater accuracy when using RGB 
images. Nevavuori et al. (2020) discussed their research 
to perform intra-field yield prediction using spatial and 
temporal base 3D-CNN architectures with time-series and 
multi-temporal data. 3D CNN can be used to handle spatial 
and temporal data. The prediction accuracy of the 3D 
CNN model is high when compared to other models. Khaki 
et al. (2021a) created a VGG-16 model to predict the yield 
of corn. In addition to image classification, the VGG-16 
network performs other vision tasks like object detection and 
counting and efficiently learns more fine-grained patterns. 
The model can be applied to quickly count multiple ears 
of corn to speed up the yield prediction. Lu et al. (2022) 
created a soybean yield prediction model using the YOLOv3 
DL algorithm. YOLOv3 has only half of the parameters 
used in ResNet101, but the performance is near. The model 
effectively predicts the yield of the crop. Zhou et al. (2021) 
presented a paper that examined the possibility of using 
UAV multispectral imagery to estimate soybean yields from 
many breeding lines under drought stress using CNN. The 
model can accurately predict soybean yields under drought 
stress. Sagan et al. (2021) presented a study to create a DL-
based model for field-scale yield prediction.

The model is built using DL approaches like 2-D CNN 
and 3-D CNN to integrate temporal, spatial, and spectral data 
in satellite images of the WorldView-3 and 25 PlanetScope 
datasets. It avoids the vanishing gradient problem by 
incorporating identity skip connections. Imagery deep 
learning-based algorithm modeling outperforms the other 
model.  Tedesco-Oliveira et al. (2020) made a cotton yield 
prediction model using the CNN DL algorithm. CNN is adept 
in image classification and object detection. According to the 
testing results, the model can be used in real-time on low-
cost devices. Yang et al. (2019) created an efficient CNN 
model for extracting key features of rice yield from low-
altitude remotely sensed images. The outcomes demonstrate 
that the CNN model trained with RGB and multispectral 
datasets outperforms VI-based regression models. Khaki et 
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al. (2021) developed a model using recurrent 3D CNN with 
a Transfer learning technique to predict the yield of corn 
and soybean. 3D-CNN captures the temporal and spatial 
effects in remote sensing data. Before harvest, the model 
can accurately estimate the yield of corn and soybean. Yang 
et al. (2021) designed a corn yield prediction model using 
the 2D-CNN DL algorithm. 2D-CNN is more suitable 
for classification and feature extraction. According to the 
findings, an integrated CNN model is better than 1D-CNN 
and 2D-CNN.

Mirhaji et al. (2021) developed a model using YOLOv4 
to predict oranges yield. The “Bag of Freebies” and “Bag 
of Specials” can improve the YOLO v4 model’s efficiency 
and accuracy. The YOLO model is a simple and efficient 
method for predicting orange fruits yield. Danilevicz et al. 
(2021) presented a multimodal DL model using ResNet18 to 
estimate Maize yield. The self-attention mechanism used in 
ResNet aids in identifying the region’s most essential to the 
forecasting. The model can use as a decision-support tool. 
Apolo et al. (2020b) created a model using RegionCNN to 
estimate the yield of apples. The model will help to maximize 
production by optimizing orchard management.

Recurrent Neural Network (RNN)

RNN is derived from the feedforward network where the 
current step’s input depends on the previous step’s output 
(Chu & Yu 2020) (Fig. 5). A hidden state of an RNN 
preserves some information about an input sequence. So 
RNNs can handle any length of the input. The computation 
considers historical data, and the model size does not grow 
in proportion to the input size. RNNs are used in handwriting 
recognition, image captioning, natural-language processing, 
computer translation, crop yield prediction, and time-series 
analysis. A type of recurrent neural network called an 
IndRNN, widely used in crop yield prediction, has been 
developed to address gradient decay over layers problems, 
where neurons present in the same layer are independent 
and remain interconnected between the layers. It can be 
trained effectively using non-saturated activation functions 
like ReLu.

Chu and Yu (2020) developed a novel IndRNN-based 
model for accurate rice yield prediction. The IndRNN learns 
temporal features effectively in meteorology data. The model 
can predict rice yield in the summer and winter seasons.

 

Fig. 5: Architecture of RNN. 

 
Fig. 6: Architecture of LSTM.
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Long Short-Term Memory Network (LSTM)

LSTM is an RNN variant that can handle long-term 
dependencies and store and recall information from the past 
(Tian et al. 2021b). The LSTM was developed to address the 
drawbacks that occur during the training of traditional RNNs, 
such as the vanishing gradient problem and the exploding 
gradient problem. LSTM is effective in time-series prediction 
because it remembers past inputs. An LSTM unit comprises 
a cell (Fig. 6). An input gate, an output gate, and a forget 
gate are the three gates in the cell. All the gates control 
the data flow in the cell, and the cell stores values for an 
indefinite period. LSTMs are widely used in pharmaceutical 
growth, speech recognition, music composition, and time-
series predictions. LSTM can identify the phonological 
characteristics and help to learn the temporal features present 
in the data. It has shown good ability in transfer learning 
and generates high accuracy yield estimation results (Wang 
et al. 2020).

Elavarasan and Vincent (2020) built a framework based 
on a deep recurrent Q-learning network using 38 features 
to predict the yield of crops. The Q-learning algorithm 
strengthens yield forecasting efficiency with the best rewards 
compared to other models. Tian et al. (2021a) designed a 
model for yield estimation in the Guanzhong Plain using an 
LSTM model by combining meteorological data and VTCI 
and LAI indices. The LSTM can detect and capture complex 
and nonlinear relationships in the data over long intervals. 
The outcomes show that the model is a robust, promising 
method for predicting yields. Yuanyuan Liu et al. (2022) 
created an LSTM-based model to forecast wheat yield across 
the Indo-Gangetic plains. LSTM can solve the problem in 
high-dimensional data and is effectively used in time-series 

data. With limited data, the approach can accurately predict 
the yield of wheat. Schwalbert et al. (2020). presented a novel 
LSTM-based model to estimate soybean yield in southern 
Brazil with four steps: data access, data wrangling, modeling, 
and yield prediction. The LSTM model produces better 
results when compared to multivariate OLS and random 
forest models.  Shook et al. (2020) designed a framework 
using stacked LSTM with a temporal attention mechanism 
to protect crop production against climatic changes such 
as irregular rainfall and temperature variations. The 
stacked LSTM model with a temporal attention mechanism 
overcomes the backflow problem. Soybean yield prediction 
with LSTM and Temporal Attention model is reliable and 
accurate. Cao et al. (2021b) built a model to predict rice 
yield by incorporating SIF and EVI, climate variables, and 
soil parameters. Three models were developed using Least 
Absolute Shrinkage and Selection Operator regression, 
Random Forest, and Long Short-Term Memory Network 
model. The LSTM model produces accurate results when 
compared to Machine learning models.

Tian et al. (2021) designed a model using LSTM with an 
attention mechanism to forecast wheat yield with remotely 
sensed biophysical indices. Time-series data can be pro-
cessed efficiently by LSTM, and the attention mechanism 
is employed to extract essential information from the input 
sequence data. The ALSTM (attention-based LSTM) model 
can give reliable crop yield estimation. Cho et al. (2021) used 
an attention-based LSTM network to estimate tomato yields 
using environmental variables. LSTM can handle long-term 
dependencies in data. The outcomes demonstrate that the 
method predicts the value more accurately.  Alibabaei et al. 
(2021) created a bidirectional LSTM-based model to analyze 
time-series data in agricultural datasets to predict the yield 

 
Fig. 7: Architecture of MLP.
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of tomatoes and potatoes. The model accurately identifies 
nonlinear relationships in the data. The results demonstrate 
the effectiveness of the LSTM model for yield prediction. 
Jiang et al. (2020) created an LSTM model by integrating 
meteorology, remote sensing data, and crop phenology to 
predict the yield of corn. To avoid over-fitting, regulariza-
tion techniques are used in LSTM. The model outperformed 
under extreme weather. 

Multilayer Perceptron (MLP)

An MLP is a part of feed-forward neural networks with 
numerous perceptron layers and activation functions (Saravi 
et al. 2019) (Fig. 7). It computes the input using the weights 
shared by the input and hidden layers. ReLUs, tanks, and 
sigmoids are the activation functions that MLP uses to 
determine which nodes to fire (Bhojani & Bhatt 2020). It uses 
a training dataset to train the model to identify the correlation 
and learn the dependencies between the independent and 
target variables. It may be used to create applications for 
speech recognition, machine translation, image recognition, 
and crop yield prediction.

Saravi et al. (2019) created an agrotechnology Transfer 
agricultural system using the MLP deep learning algorithm, 
which acts as a Decision Support System to predict crop 
yield. Principle component analysis is added to the dataset 
to reduce input which speeds up the training and computing 
of the model. The outcomes demonstrate the MLP model is 
effective in predicting crop yields. Bhojani and Bhatt (2020) 
discussed developing a Multilayer Perceptron based model 
with a new activation function called DharaSig for crop 
yield estimation in their research. The MLP algorithm with 
the DharaSig activation function outperforms the original 
MLP algorithm for yield forecasting with a lower error rate.  

Hybrid Deep Learning Approaches

Cao et al. (2021a) created a hybrid DNN+1D CNN+LSTM 
model for crop yield prediction. Four models were built 
using Convolutional Neural Networks, Random Forests, and 
Long Short-Term Memory networks. 1D-CNNs are used 
in applications like fault detection in high-power engines, 
structural damage detection systems, and electrocardiogram 
beat classification. The model can efficiently predict crop 
yield at field and county levels. Jeong et al. (2022) developed 
a model by combining LSTM and 1D-CNN to predict the 
yield of a rice crop. LSTM added a batch normalization layer 
after activation layers to speed convergence and prevent 
vanishing gradient problems. The approach successfully 
predicts the yield of rice in inaccessible locations. Lee et al. 
(2019) created a platform that estimates the yield of a crop 
by integrating crop disease data, climate change data and 
form status information using CNN and ANN algorithms. 

CNN effectively perform object detection and classification 
task.  The model is more effective and accurate at predicting 
farm yields. Wang et al. (2020) built a CNN-LSTM DL 
model to estimate wheat yield in China’s major planting 
area. LSTM is adept at processing time-series data in 
climatic data. The model has much potential for use in other 
varieties of crops and agricultural landscapes worldwide. 
Chen et al. (2019) designed a system that automatically 
detects strawberry flowers to predict yield using the Faster 
R-CNN DL algorithm. Faster R-CNN effectively handles 
the degradation problem using a deep residual learning 
framework. The model gives accurate counts of strawberry 
flowers and forecasts future yields. Sun et al. (2019) formed 
a model to predict the yield of soybeans at the country level 
using deep CNN and LSTM.

CNN explores spatial features, and LSTM reveals phe-
nological properties of the MODIS dataset. The outcomes 
reveal the CNN-LSTM model is efficient in soybean yield 
prediction.  Khaki and Archontoulis (2020) presented a paper 
to accurately predict the yield of corn and soybean using 
CNN and RNN with a back propagation method. RNN, with 
the backpropagation method, supports time-dependent data, 
and CNN captures the temporal and spatial dependency in 
the dataset. The dataset contained four different types of 
dataset: weather, yield performance, management-related 
information, and soil. The CNN-RNN model gives better 
prediction results when compared to other models. Qiao et 
al. (2021) designed a novel spatial-spectral-temporal neu-
ral network using recurrent 3D-CNN to predict the yield 
of wheat and corn. 3D-CNN exploits spectral information 
from 3D data. The model outperforms better prediction 
performance when compared to other models. Apolo et al. 
(2020a) designed a model to identify and estimate the yield 
and size of citrus fruits using Faster R-CNN + LSTM. The 
Faster-R-CNN model can utilize Inception, Atrous, and 
ResNet architectures to improve accuracy and efficiency. 
The results show that the model can estimate the yield of all 
types of fruit.  Shahhosseini et al. (2021) created a model by 
combining CNN and DNN DL algorithms to predict the yield 
of corn. CNN captures the temporal and spatial dependencies 
in data. The model was designed to predict corn yield and 
assist agronomic decision-makers.

RESULTS AND DISCUSSION

Performance Evaluation Metrics 

Different evaluation metrics utilized to measure the
performance of DL in crop yield prediction are given in
Table 2. A total of 18 different evaluation metrics such as
RMSE, R2, MAE, MAPE, MSE, F1 Score, Recall, MedAE,
mAP, Accuracy, Average Precision, Kappa coefficient,
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Table 2: Performance metrics used in crop yield prediction.

Performance Metrics Formula Description

Root Mean Square Error (RMSE)

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = √
𝟏𝟏
𝒏𝒏 ∑( 𝒚𝒚𝒋𝒋 − 𝒚̂𝒚𝒋𝒋 )𝟐𝟐

𝒏𝒏

𝒋𝒋=𝟏𝟏
 y

j –  Actual value
𝑦̂𝑦𝑗𝑗   - Forecast value
n -  no. of observation

Mean Square Error (MSE) 𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏

∑ ( 𝒚𝒚𝒋𝒋 − 𝒚̂𝒚𝒋𝒋 )𝟐𝟐𝒏𝒏
𝒋𝒋=𝟏𝟏     

 

 

 

Mean Absolute Error (MAE)
𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏

𝒏𝒏 ∑ | 𝒚𝒚𝒋𝒋 − 𝒚̂𝒚𝒋𝒋 |
𝒏𝒏

𝒋𝒋=𝟏𝟏
  

 
Mean Absolute Percentage Error (MAPE)

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝒏𝒏 ∑ | 

𝒚𝒚𝒋𝒋 − 𝒚̂𝒚𝒋𝒋
𝒚𝒚𝒋𝒋

 |
𝒏𝒏

𝒋𝒋=𝟏𝟏
 

 
Coefficient of determination (R2)

𝐑𝐑𝟐𝟐 = 𝟏𝟏 − 𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑻𝑻𝑻𝑻 

 

RSS –Sum of square of residuals
TSS – Total sum of square

Precision
𝐏𝐏 = 𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻+ 𝑭𝑭𝑭𝑭 

 

TP – True positive
FP – False positive

Recall
𝐑𝐑 = 𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻+ 𝑭𝑭𝑭𝑭 

 

TP – True positive
FN – False negative

F1 Score 

 

𝐅𝐅𝐅𝐅 = 𝟐𝟐 ∗ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 ∗ 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 

 
Table 3: Overview of different deep learning algorithms, crop utilized, and evaluation metrics used in crop yield prediction.

Authors Deep Learning Algorithms Crops Performance Evaluation Metrics

Alibabaei et al. (2021)  Bidirectional LSTM Tomato, Potato MSE, R2

Apolo  et al. (2020b) R-CNN Apple R2, MAE, RMSE

 Apolo et al. (2020) Faster R-CNN +LSTM Citrus fruit Precision, Recall, F1 Score 

Bhojani and Bhatt (2020) MLP Wheat MAE, RMSE, MAPE, MSE, RAE, RRSE

Bi and Hu (2021) Genetic algorithm-assisted DNN Crop RMSE 

Cao et al. (2021a) DNN+1D CNN+LSTM Wheat RMSE, R2

Cao et al. (2021b) LSTM Rice RMSE, R2

Chen et al. (2019) Faster R-CNN Strawberry Mean Average Precision

Cho et al. (2021) Attention-based LSTM +ARMA Tomato MSE, RMSE

Chu and Yu (2020) IndRNN Rice MAE, RMSE

Danilevicz et al. (2021) Spectral deep neural network 
(ResNet18)

Maize RMSE, relative RMSE, R2 score

Elavarasan and Vincent (2020) Deep RNN +Q Learning Paddy MAE, MSE,  RMSE, R2, MedAE, MAPE

Elavarasan and Vincent (2021) DBN+FNN Paddy MSLE, RMSE, MSE, MAE, R2, MedAE, MSLE

Gao et al. (2020) DNN Corn and Soybean R2, MAE, MAPE

Jeong et al. (2022). LSTM+1D-CNN Rice R2, RMSE, NSE

Jiang et al.  (2020) LSTM Corn RMSE, R2

Kalantar et al. (2020) RetinaNet deep CNN, Transfer 
learning

Melon Average precision score, F1 score, MAPE.

Khaki and Archontoulis (2020) CNN-RNN Corn RMSE
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MSLE, RAE, RRSE, NSE, Precision, and Relative RMSE
were investigated in the reviewed papers. The DL
algorithms and different evaluation approaches used in the
articles were analyzed and presented in Table 3 to answer
the research question (RQ5)

CONCLUSION

The paper analyzes the study of a deep learning algorithm 
based on crop yield prediction. The survey categorizes 
existing strategies based on the crop used, the methodologies 
employed, the datasets used, and the performance metrics 
used. CNN, RNN, LSTM, and MLP are some of the DL 
algorithms used to predict crop yield. The CNN algorithm 
produces outstanding results in object detection and image 
classification tasks. The LSTM can detect and capture 
complex and nonlinear relationships in the data over long 
intervals.  Two main DL algorithms for accurately estimating 

crop yields are CNN and LSTM. These techniques can 
successfully estimate and forecast various crops’ yields. 
Transfer learning and Data augmentation were used to 
solve the large dataset training in DL models.  The RMSE 
was the most frequently used evaluation metric in the 
reviewed articles, followed by MAPE, R2, MSE, and MAE. 
In the future, the factors like plant disease, temperature and 
rainfall, pests, fertilizer, and soil quality can be considered 
for improving the performance of crop yield prediction using 
DL approaches. 
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