Computer Science > Human-Computer Interaction
[Submitted on 26 Mar 2022]
Title:Implementation of an Automated Learning System for Non-experts
View PDFAbstract:Automated machine learning systems for non-experts could be critical for industries to adopt artificial intelligence to their own applications. This paper detailed the engineering system implementation of an automated machine learning system called YMIR, which completely relies on graphical interface to interact with users. After importing training/validation data into the system, a user without AI knowledge can label the data, train models, perform data mining and evaluation by simply clicking buttons. The paper described: 1) Open implementation of model training and inference through docker containers. 2) Implementation of task and resource management. 3) Integration of Labeling software. 4) Implementation of HCI (Human Computer Interaction) with a rebuilt collaborative development paradigm. We also provide subsequent case study on training models with the system. We hope this paper can facilitate the prosperity of our automated machine learning community from industry application perspective. The code of the system has already been released to GitHub (this https URL).
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.