Computer Science > Computation and Language
[Submitted on 22 May 2022 (v1), last revised 24 May 2022 (this version, v2)]
Title:Phrase-level Textual Adversarial Attack with Label Preservation
View PDFAbstract:Generating high-quality textual adversarial examples is critical for investigating the pitfalls of natural language processing (NLP) models and further promoting their robustness. Existing attacks are usually realized through word-level or sentence-level perturbations, which either limit the perturbation space or sacrifice fluency and textual quality, both affecting the attack effectiveness. In this paper, we propose Phrase-Level Textual Adversarial aTtack (PLAT) that generates adversarial samples through phrase-level perturbations. PLAT first extracts the vulnerable phrases as attack targets by a syntactic parser, and then perturbs them by a pre-trained blank-infilling model. Such flexible perturbation design substantially expands the search space for more effective attacks without introducing too many modifications, and meanwhile maintaining the textual fluency and grammaticality via contextualized generation using surrounding texts. Moreover, we develop a label-preservation filter leveraging the likelihoods of language models fine-tuned on each class, rather than textual similarity, to rule out those perturbations that potentially alter the original class label for humans. Extensive experiments and human evaluation demonstrate that PLAT has a superior attack effectiveness as well as a better label consistency than strong baselines.
Submission history
From: Yu Cao [view email][v1] Sun, 22 May 2022 02:22:38 UTC (413 KB)
[v2] Tue, 24 May 2022 08:57:11 UTC (413 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.