Computer Science > Multiagent Systems
[Submitted on 25 May 2022 (v1), last revised 30 May 2024 (this version, v2)]
Title:Trust-based Consensus in Multi-Agent Reinforcement Learning Systems
View PDF HTML (experimental)Abstract:An often neglected issue in multi-agent reinforcement learning (MARL) is the potential presence of unreliable agents in the environment whose deviations from expected behavior can prevent a system from accomplishing its intended tasks. In particular, consensus is a fundamental underpinning problem of cooperative distributed multi-agent systems. Consensus requires different agents, situated in a decentralized communication network, to reach an agreement out of a set of initial proposals that they put forward. Learning-based agents should adopt a protocol that allows them to reach consensus despite having one or more unreliable agents in the system. This paper investigates the problem of unreliable agents in MARL, considering consensus as a case study. Echoing established results in the distributed systems literature, our experiments show that even a moderate fraction of such agents can greatly impact the ability of reaching consensus in a networked environment. We propose Reinforcement Learning-based Trusted Consensus (RLTC), a decentralized trust mechanism, in which agents can independently decide which neighbors to communicate with. We empirically demonstrate that our trust mechanism is able to handle unreliable agents effectively, as evidenced by higher consensus success rates.
Submission history
From: Victor-Alexandru Darvariu [view email][v1] Wed, 25 May 2022 15:58:34 UTC (622 KB)
[v2] Thu, 30 May 2024 15:04:27 UTC (1,001 KB)
Current browse context:
cs.MA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.