Computer Science > Machine Learning
[Submitted on 11 Jul 2022]
Title:Horizontal Federated Learning and Secure Distributed Training for Recommendation System with Intel SGX
View PDFAbstract:With the advent of big data era and the development of artificial intelligence and other technologies, data security and privacy protection have become more important. Recommendation systems have many applications in our society, but the model construction of recommendation systems is often inseparable from users' data. Especially for deep learning-based recommendation systems, due to the complexity of the model and the characteristics of deep learning itself, its training process not only requires long training time and abundant computational resources but also needs to use a large amount of user data, which poses a considerable challenge in terms of data security and privacy protection. How to train a distributed recommendation system while ensuring data security has become an urgent problem to be solved. In this paper, we implement two schemes, Horizontal Federated Learning and Secure Distributed Training, based on Intel SGX(Software Guard Extensions), an implementation of a trusted execution environment, and TensorFlow framework, to achieve secure, distributed recommendation system-based learning schemes in different scenarios. We experiment on the classical Deep Learning Recommendation Model (DLRM), which is a neural network-based machine learning model designed for personalization and recommendation, and the results show that our implementation introduces approximately no loss in model performance. The training speed is within acceptable limits.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.