Electrical Engineering and Systems Science > Systems and Control
[Submitted on 12 Jul 2022]
Title:On How to Not Prove Faulty Controllers Safe in Differential Dynamic Logic
View PDFAbstract:Cyber-physical systems are often safety-critical and their correctness is crucial, as in the case of automated driving. Using formal mathematical methods is one way to guarantee correctness. Though these methods have shown their usefulness, care must be taken as modeling errors might result in proving a faulty controller safe, which is potentially catastrophic in practice. This paper deals with two such modeling errors in differential dynamic logic. Differential dynamic logic is a formal specification and verification language for hybrid systems, which are mathematical models of cyber-physical systems. The main contribution is to prove conditions that when fulfilled, these two modeling errors cannot cause a faulty controller to be proven safe. The problems are illustrated with a real world example of a safety controller for automated driving, and it is shown that the formulated conditions have the intended effect both for a faulty and a correct controller. It is also shown how the formulated conditions aid in finding a loop invariant candidate to prove properties of hybrid systems with feedback loops. The results are proven using the interactive theorem prover KeYmaera X.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.