Computer Science > Computational Engineering, Finance, and Science
[Submitted on 30 Nov 2022 (v1), last revised 6 Dec 2022 (this version, v2)]
Title:GPU-Accelerated DNS of Compressible Turbulent Flows
View PDFAbstract:This paper explores strategies to transform an existing CPU-based high-performance computational fluid dynamics solver, HyPar, for compressible flow simulations on emerging exascale heterogeneous (CPU+GPU) computing platforms. The scientific motivation for developing a GPU-enhanced version of HyPar is to simulate canonical turbulent flows at the highest resolution possible on such platforms. We show that optimizing memory operations and thread blocks results in 200x speedup of computationally intensive kernels compared with a CPU core. Using multiple GPUs and CUDA-aware MPI communication, we demonstrate both strong and weak scaling of our GPU-based HyPar implementation on the NVIDIA Volta V100 GPUs. We simulate the decay of homogeneous isotropic turbulence in a triply periodic box on grids with up to $1024^3$ points (5.3 billion degrees of freedom) and on up to 1,024 GPUs. We compare the wall times for CPU-only and CPU+GPU simulations. The results presented in the paper are obtained on the Summit and Lassen supercomputers at Oak Ridge and Lawrence Livermore National Laboratories, respectively.
Submission history
From: Youngdae Kim [view email][v1] Wed, 30 Nov 2022 03:50:27 UTC (1,711 KB)
[v2] Tue, 6 Dec 2022 03:17:08 UTC (31,139 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.