Computer Science > Robotics
[Submitted on 25 Feb 2023 (v1), last revised 20 Dec 2023 (this version, v3)]
Title:Accurate Gaussian-Process-based Distance Fields with applications to Echolocation and Mapping
View PDF HTML (experimental)Abstract:This paper introduces a novel method to estimate distance fields from noisy point clouds using Gaussian Process (GP) regression. Distance fields, or distance functions, gained popularity for applications like point cloud registration, odometry, SLAM, path planning, shape reconstruction, etc. A distance field provides a continuous representation of the scene defined as the shortest distance from any query point and the closest surface. The key concept of the proposed method is the transformation of a GP-inferred latent scalar field into an accurate distance field by using a reverting function related to the kernel inverse. The latent field can be interpreted as a smooth occupancy map. This paper provides the theoretical derivation of the proposed method as well as a novel uncertainty proxy for the distance estimates. The improved performance compared with existing distance fields is demonstrated with simulated experiments. The level of accuracy of the proposed approach enables novel applications that rely on precise distance estimation: this work presents echolocation and mapping frameworks for ultrasonic-guided wave sensing in metallic structures. These methods leverage the proposed distance field with a physics-based measurement model accounting for the propagation of the ultrasonic waves in the material. Real-world experiments are conducted to demonstrate the soundness of these frameworks.
Submission history
From: Cedric Le Gentil [view email][v1] Sat, 25 Feb 2023 06:48:22 UTC (3,831 KB)
[v2] Tue, 5 Sep 2023 12:07:46 UTC (2,183 KB)
[v3] Wed, 20 Dec 2023 02:59:32 UTC (2,034 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.