Computer Science > Machine Learning
[Submitted on 24 Mar 2023]
Title:Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
View PDFAbstract:In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition (i.e., less generalizable), so that one cannot prevent a model from co-adapting on such (so-called) "shortcut" signals: this makes the model fragile in various distribution shifts. To bypass such failure modes, we consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training. This motivates us to extend the standard information bottleneck to additionally model the nuisance information. We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training concerning both convolutional- and Transformer-based architectures. Our experimental results show that the proposed scheme improves robustness of learned representations (remarkably without using any domain-specific knowledge), with respect to multiple challenging reliability measures. For example, our model could advance the state-of-the-art on a recent challenging OBJECTS benchmark in novelty detection by $78.4\% \rightarrow 87.2\%$ in AUROC, while simultaneously enjoying improved corruption, background and (certified) adversarial robustness. Code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.