Computer Science > Machine Learning
[Submitted on 18 Oct 2023 (v1), last revised 11 Jun 2024 (this version, v4)]
Title:On the Distributed Evaluation of Generative Models
View PDF HTML (experimental)Abstract:The evaluation of deep generative models has been extensively studied in the centralized setting, where the reference data are drawn from a single probability distribution. On the other hand, several applications of generative models concern distributed settings, e.g. the federated learning setting, where the reference data for conducting evaluation are provided by several clients in a network. In this paper, we study the evaluation of generative models in such distributed contexts with potentially heterogeneous data distributions across clients. We focus on the widely-used distance-based evaluation metrics, Fréchet Inception Distance (FID) and Kernel Inception Distance (KID). In the case of KID metric, we prove that scoring a group of generative models using the clients' averaged KID score will result in the same ranking as that of a centralized KID evaluation over a collective reference set containing all the clients' data. In contrast, we show the same result does not apply to the FID-based evaluation. We provide examples in which two generative models are assigned the same FID score by each client in a distributed setting, while the centralized FID scores of the two models are significantly different. We perform several numerical experiments on standard image datasets and generative models to support our theoretical results on the distributed evaluation of generative models using FID and KID scores.
Submission history
From: Zixiao Wang [view email][v1] Wed, 18 Oct 2023 05:06:04 UTC (1,321 KB)
[v2] Fri, 2 Feb 2024 05:42:13 UTC (7,396 KB)
[v3] Tue, 27 Feb 2024 09:06:43 UTC (7,396 KB)
[v4] Tue, 11 Jun 2024 07:33:04 UTC (8,796 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.