Computer Science > Machine Learning
[Submitted on 15 Nov 2023 (v1), last revised 20 Aug 2024 (this version, v2)]
Title:Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
View PDF HTML (experimental)Abstract:Self-supervised representation learning often uses data augmentations to induce some invariance to "style" attributes of the data. However, with downstream tasks generally unknown at training time, it is difficult to deduce a priori which attributes of the data are indeed "style" and can be safely discarded. To deal with this, current approaches try to retain some style information by tuning the degree of invariance to some particular task, such as ImageNet object classification. However, prior work has shown that such task-specific tuning can lead to significant performance degradation on other tasks that rely on the discarded style. To address this, we introduce a more principled approach that seeks to disentangle style features rather than discard them. The key idea is to add multiple style embedding spaces where: (i) each is invariant to all-but-one augmentation; and (ii) joint entropy is maximized. We formalize our structured data-augmentation procedure from a causal latent-variable-model perspective, and prove identifiability of both content and individual style variables. We empirically demonstrate the benefits of our approach on both synthetic and real-world data.
Submission history
From: Cian Eastwood [view email][v1] Wed, 15 Nov 2023 09:34:08 UTC (4,531 KB)
[v2] Tue, 20 Aug 2024 15:33:12 UTC (4,553 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.