Computer Science > Computational Geometry
[Submitted on 17 Nov 2023 (v1), last revised 9 Apr 2024 (this version, v2)]
Title:Minimum Star Partitions of Simple Polygons in Polynomial Time
View PDFAbstract:We devise a polynomial-time algorithm for partitioning a simple polygon $P$ into a minimum number of star-shaped polygons. The question of whether such an algorithm exists has been open for more than four decades [Avis and Toussaint, Pattern Recognit., 1981] and it has been repeated frequently, for example in O'Rourke's famous book [Art Gallery Theorems and Algorithms, 1987]. In addition to its strong theoretical motivation, the problem is also motivated by practical domains such as CNC pocket milling, motion planning, and shape parameterization.
The only previously known algorithm for a non-trivial special case is for $P$ being both monotone and rectilinear [Liu and Ntafos, Algorithmica, 1991]. For general polygons, an algorithm was only known for the restricted version in which Steiner points are disallowed [Keil, SIAM J. Comput., 1985], meaning that each corner of a piece in the partition must also be a corner of $P$. Interestingly, the solution size for the restricted version may be linear for instances where the unrestricted solution has constant size. The covering variant in which the pieces are star-shaped but allowed to overlap--known as the Art Gallery Problem--was recently shown to be $\exists\mathbb R$-complete and is thus likely not in NP [Abrahamsen, Adamaszek and Miltzow, STOC 2018 & J. ACM 2022]; this is in stark contrast to our result. Arguably the most related work to ours is the polynomial-time algorithm to partition a simple polygon into a minimum number of convex pieces by Chazelle and Dobkin~[STOC, 1979 & Comp. Geom., 1985].
Submission history
From: Hanwen Zhang [view email][v1] Fri, 17 Nov 2023 16:33:20 UTC (789 KB)
[v2] Tue, 9 Apr 2024 13:45:56 UTC (790 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.