Computer Science > Machine Learning
[Submitted on 17 Dec 2023]
Title:A Weighted K-Center Algorithm for Data Subset Selection
View PDF HTML (experimental)Abstract:The success of deep learning hinges on enormous data and large models, which require labor-intensive annotations and heavy computation costs. Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data, which can then be used to produce similar models as the ones trained with full data. Two prior methods are shown to achieve impressive results: (1) margin sampling that focuses on selecting points with high uncertainty, and (2) core-sets or clustering methods such as k-center for informative and diverse subsets. We are not aware of any work that combines these methods in a principled manner. To this end, we develop a novel and efficient factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions. To handle large datasets, we show a parallel algorithm to run on multiple machines with approximation guarantees. The proposed algorithm achieves similar or better performance compared to other strong baselines on vision datasets such as CIFAR-10, CIFAR-100, and ImageNet.
Submission history
From: Srikumar Ramalingam [view email][v1] Sun, 17 Dec 2023 04:41:07 UTC (585 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.