Electrical Engineering and Systems Science > Systems and Control
[Submitted on 9 Feb 2024]
Title:Reduced-order Modeling of Modular, Position-dependent Systems with Translating Interfaces
View PDF HTML (experimental)Abstract:Many complex mechatronic systems consist of multiple interconnected dynamical subsystems, which are designed, developed, analyzed, and manufactured by multiple independent teams. To support such a design approach, a modular model framework is needed to reduce computational complexity and, at the same time, enable multiple teams to develop and analyze the subsystems in parallel. In such a modular framework, the subsystem models are typically interconnected by means of a static interconnection structure. However, many complex dynamical systems exhibit position-dependent behavior (e.g., induced by translating interfaces) which cannot be not captured by such static interconnection models. In this paper, a modular model framework is proposed, which allows to construct an interconnected system model, which captures the position-dependent behavior of systems with translating interfaces, such as linear guide rails, through a position-dependent interconnection structure. Additionally, this framework allows to apply model reduction on subsystem level, enabling a more effective reduction approach, tailored to the specific requirements of each subsystem. Furthermore, we show the effectiveness of this framework on an industrial wire bonder. Here, we show that including a position-dependent model of the interconnection structure 1) enables to accurately model the dynamics of a system over the operating range of the system and, 2) modular model reduction methods can be used to obtain a computationally efficient interconnected system model with guaranteed accuracy specifications.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.