Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Feb 2024 (v1), last revised 21 Mar 2024 (this version, v3)]
Title:Separate and Conquer: Decoupling Co-occurrence via Decomposition and Representation for Weakly Supervised Semantic Segmentation
View PDF HTML (experimental)Abstract:Weakly supervised semantic segmentation (WSSS) with image-level labels aims to achieve segmentation tasks without dense annotations. However, attributed to the frequent coupling of co-occurring objects and the limited supervision from image-level labels, the challenging co-occurrence problem is widely present and leads to false activation of objects in WSSS. In this work, we devise a 'Separate and Conquer' scheme SeCo to tackle this issue from dimensions of image space and feature space. In the image space, we propose to 'separate' the co-occurring objects with image decomposition by subdividing images into patches. Importantly, we assign each patch a category tag from Class Activation Maps (CAMs), which spatially helps remove the co-context bias and guide the subsequent representation. In the feature space, we propose to 'conquer' the false activation by enhancing semantic representation with multi-granularity knowledge contrast. To this end, a dual-teacher-single-student architecture is designed and tag-guided contrast is conducted, which guarantee the correctness of knowledge and further facilitate the discrepancy among co-contexts. We streamline the multi-staged WSSS pipeline end-to-end and tackle this issue without external supervision. Extensive experiments are conducted, validating the efficiency of our method and the superiority over previous single-staged and even multi-staged competitors on PASCAL VOC and MS COCO. Code is available at this https URL.
Submission history
From: Zhiwei Yang [view email][v1] Wed, 28 Feb 2024 16:43:27 UTC (4,575 KB)
[v2] Thu, 29 Feb 2024 08:35:47 UTC (4,575 KB)
[v3] Thu, 21 Mar 2024 14:33:33 UTC (4,576 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.