Computer Science > Computation and Language
[Submitted on 29 Feb 2024 (v1), last revised 5 Feb 2025 (this version, v2)]
Title:EBBS: An Ensemble with Bi-Level Beam Search for Zero-Shot Machine Translation
View PDF HTML (experimental)Abstract:The ability of zero-shot translation emerges when we train a multilingual model with certain translation directions; the model can then directly translate in unseen directions. Alternatively, zero-shot translation can be accomplished by pivoting through a third language (e.g., English). In our work, we observe that both direct and pivot translations are noisy and achieve less satisfactory performance. We propose EBBS, an ensemble method with a novel bi-level beam search algorithm, where each ensemble component explores its own prediction step by step at the lower level but they are synchronized by a "soft voting" mechanism at the upper level. Results on two popular multilingual translation datasets show that EBBS consistently outperforms direct and pivot translations as well as existing ensemble techniques. Further, we can distill the ensemble's knowledge back to the multilingual model to improve inference efficiency; profoundly, our EBBS-based distillation does not sacrifice, or even improves, the translation quality.
Submission history
From: Yuqiao Wen [view email][v1] Thu, 29 Feb 2024 21:49:31 UTC (2,794 KB)
[v2] Wed, 5 Feb 2025 19:44:43 UTC (5,403 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.