Computer Science > Machine Learning
[Submitted on 15 Mar 2024 (v1), last revised 14 May 2024 (this version, v2)]
Title:A Short Survey on Importance Weighting for Machine Learning
View PDF HTML (experimental)Abstract:Importance weighting is a fundamental procedure in statistics and machine learning that weights the objective function or probability distribution based on the importance of the instance in some sense. The simplicity and usefulness of the idea has led to many applications of importance weighting. For example, it is known that supervised learning under an assumption about the difference between the training and test distributions, called distribution shift, can guarantee statistically desirable properties through importance weighting by their density ratio. This survey summarizes the broad applications of importance weighting in machine learning and related research.
Submission history
From: Masanari Kimura [view email][v1] Fri, 15 Mar 2024 10:31:46 UTC (313 KB)
[v2] Tue, 14 May 2024 05:58:19 UTC (2,888 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.