Computer Science > Discrete Mathematics
[Submitted on 21 May 2024]
Title:Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four
View PDFAbstract:We examine the complexity of maximising fitness via local search on valued constraint satisfaction problems (VCSPs). We consider two kinds of local ascents: (1) steepest ascents, where each step changes the domain that produces a maximal increase in fitness; and (2) $\prec$-ordered ascents, where -- of the domains with available fitness increasing changes -- each step changes the $\prec$-minimal domain. We provide a general padding argument to simulate any ordered ascent by a steepest ascent. We construct a VCSP that is a path of binary constraints between alternating 2-state and 3-state domains with exponentially long ordered ascents. We apply our padding argument to this VCSP to obtain a Boolean VCSP that has a constraint (hyper)graph of arity 5 and pathwidth 4 with exponential steepest ascents. This is an improvement on the previous best known construction for long steepest ascents, which had arity 8 and pathwidth 7.
Submission history
From: Artem Kaznatcheev [view email][v1] Tue, 21 May 2024 16:22:06 UTC (1,067 KB)
Current browse context:
cs.DM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.