Computer Science > Machine Learning
[Submitted on 24 May 2024 (v1), last revised 30 Oct 2024 (this version, v3)]
Title:Kronecker-Factored Approximate Curvature for Physics-Informed Neural Networks
View PDFAbstract:Physics-informed neural networks (PINNs) are infamous for being hard to train. Recently, second-order methods based on natural gradient and Gauss-Newton methods have shown promising performance, improving the accuracy achieved by first-order methods by several orders of magnitude. While promising, the proposed methods only scale to networks with a few thousand parameters due to the high computational cost to evaluate, store, and invert the curvature matrix. We propose Kronecker-factored approximate curvature (KFAC) for PINN losses that greatly reduces the computational cost and allows scaling to much larger networks. Our approach goes beyond the established KFAC for traditional deep learning problems as it captures contributions from a PDE's differential operator that are crucial for optimization. To establish KFAC for such losses, we use Taylor-mode automatic differentiation to describe the differential operator's computation graph as a forward network with shared weights. This allows us to apply KFAC thanks to a recently-developed general formulation for networks with weight sharing. Empirically, we find that our KFAC-based optimizers are competitive with expensive second-order methods on small problems, scale more favorably to higher-dimensional neural networks and PDEs, and consistently outperform first-order methods and LBFGS.
Submission history
From: Felix Dangel [view email][v1] Fri, 24 May 2024 14:36:02 UTC (6,122 KB)
[v2] Mon, 27 May 2024 14:23:46 UTC (6,115 KB)
[v3] Wed, 30 Oct 2024 15:53:30 UTC (25,565 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.