Computer Science > Machine Learning
[Submitted on 29 Jul 2024]
Title:Enhancing Adversarial Text Attacks on BERT Models with Projected Gradient Descent
View PDFAbstract:Adversarial attacks against deep learning models represent a major threat to the security and reliability of natural language processing (NLP) systems. In this paper, we propose a modification to the BERT-Attack framework, integrating Projected Gradient Descent (PGD) to enhance its effectiveness and robustness. The original BERT-Attack, designed for generating adversarial examples against BERT-based models, suffers from limitations such as a fixed perturbation budget and a lack of consideration for semantic similarity. The proposed approach in this work, PGD-BERT-Attack, addresses these limitations by leveraging PGD to iteratively generate adversarial examples while ensuring both imperceptibility and semantic similarity to the original input. Extensive experiments are conducted to evaluate the performance of PGD-BERT-Attack compared to the original BERT-Attack and other baseline methods. The results demonstrate that PGD-BERT-Attack achieves higher success rates in causing misclassification while maintaining low perceptual changes. Furthermore, PGD-BERT-Attack produces adversarial instances that exhibit greater semantic resemblance to the initial input, enhancing their applicability in real-world scenarios. Overall, the proposed modification offers a more effective and robust approach to adversarial attacks on BERT-based models, thus contributing to the advancement of defense against attacks on NLP systems.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.