Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 21 Aug 2024]
Title:Distributed-Memory Parallel Algorithms for Sparse Matrix and Sparse Tall-and-Skinny Matrix Multiplication
View PDF HTML (experimental)Abstract:We consider a sparse matrix-matrix multiplication (SpGEMM) setting where one matrix is square and the other is tall and skinny. This special variant, called TS-SpGEMM, has important applications in multi-source breadth-first search, influence maximization, sparse graph embedding, and algebraic multigrid solvers. Unfortunately, popular distributed algorithms like sparse SUMMA deliver suboptimal performance for TS-SpGEMM. To address this limitation, we develop a novel distributed-memory algorithm tailored for TS-SpGEMM. Our approach employs customized 1D partitioning for all matrices involved and leverages sparsity-aware tiling for efficient data transfers. In addition, it minimizes communication overhead by incorporating both local and remote computations. On average, our TS-SpGEMM algorithm attains 5x performance gains over 2D and 3D SUMMA. Furthermore, we use our algorithm to implement multi-source breadth-first search and sparse graph embedding algorithms and demonstrate their scalability up to 512 Nodes (or 65,536 cores) on NERSC Perlmutter.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.