Computer Science > Computation and Language
[Submitted on 14 Mar 2022]
Title:Contrastive Visual Semantic Pretraining Magnifies the Semantics of Natural Language Representations
View PDFAbstract:We examine the effects of contrastive visual semantic pretraining by comparing the geometry and semantic properties of contextualized English language representations formed by GPT-2 and CLIP, a zero-shot multimodal image classifier which adapts the GPT-2 architecture to encode image captions. We find that contrastive visual semantic pretraining significantly mitigates the anisotropy found in contextualized word embeddings from GPT-2, such that the intra-layer self-similarity (mean pairwise cosine similarity) of CLIP word embeddings is under .25 in all layers, compared to greater than .95 in the top layer of GPT-2. CLIP word embeddings outperform GPT-2 on word-level semantic intrinsic evaluation tasks, and achieve a new corpus-based state of the art for the RG65 evaluation, at .88. CLIP also forms fine-grained semantic representations of sentences, and obtains Spearman's rho = .73 on the SemEval-2017 Semantic Textual Similarity Benchmark with no fine-tuning, compared to no greater than rho = .45 in any layer of GPT-2. Finally, intra-layer self-similarity of CLIP sentence embeddings decreases as the layer index increases, finishing at .25 in the top layer, while the self-similarity of GPT-2 sentence embeddings formed using the EOS token increases layer-over-layer and never falls below .97. Our results indicate that high anisotropy is not an inevitable consequence of contextualization, and that visual semantic pretraining is beneficial not only for ordering visual representations, but also for encoding useful semantic representations of language, both on the word level and the sentence level.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.