Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Preprints
https://doi.org/10.5194/egusphere-2023-2309
https://doi.org/10.5194/egusphere-2023-2309
06 Nov 2023
 | 06 Nov 2023

Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data

Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang

Abstract. Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea-level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing strategies. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods, but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty in order to enhance inter-comparison and empower physical process insights across glacier elevation-change studies.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

16 Jul 2024
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2309', Silvan Leinss, 16 Jan 2024
    Citation: https://doi.org/10.5194/egusphere-2023-2309-RC1
  • RC2: 'Comment on egusphere-2023-2309', Anonymous Referee #2, 10 Feb 2024
    Citation: https://doi.org/10.5194/egusphere-2023-2309-RC2
    • AC1: 'Reply on RC2', Livia Piermattei, 09 Mar 2024
      Citation: https://doi.org/10.5194/egusphere-2023-2309-AC1

    Interactive discussion

    Status: closed

    Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
    • RC1: 'Comment on egusphere-2023-2309', Silvan Leinss, 16 Jan 2024
      Citation: https://doi.org/10.5194/egusphere-2023-2309-RC1
  • RC2: 'Comment on egusphere-2023-2309', Anonymous Referee #2, 10 Feb 2024
    Citation: https://doi.org/10.5194/egusphere-2023-2309-RC2
    • AC1: 'Reply on RC2', Livia Piermattei, 09 Mar 2024
      Citation: https://doi.org/10.5194/egusphere-2023-2309-AC1

    Peer review completion

    AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
    ED: Publish subject to revisions (further review by editor and referees) (11 Mar 2024) by Vishnu Nandan
    AR by Livia Piermattei on behalf of the Authors (13 Mar 2024)  Author's response   Author's tracked changes   Manuscript 
    ED: Referee Nomination & Report Request started (14 Mar 2024) by Vishnu Nandan
    RR by Silvan Leinss (14 May 2024)
    ED: Publish subject to technical corrections (14 May 2024) by Vishnu Nandan
    AR by Livia Piermattei on behalf of the Authors (18 May 2024)  Author's response   Manuscript 

    Journal article(s) based on this preprint

    16 Jul 2024
    Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
    Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
    The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
    Short summary
    Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang

    Supplement

    https://doi.org/10.5194/egusphere-2023-2309-supplement

    Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang

    Viewed

    Total article views: 1,137 (including HTML, PDF, and XML)
    HTML PDF XML Total Supplement BibTeX EndNote
    862 235 40 1,137 70 30 31
    • HTML: 862
    • PDF: 235
    • XML: 40
    • Total: 1,137
    • Supplement: 70
    • BibTeX: 30
    • EndNote: 31
    Views and downloads (calculated since 06 Nov 2023)
    Cumulative views and downloads (calculated since 06 Nov 2023)

    Viewed (geographical distribution)

    Total article views: 1,123 (including HTML, PDF, and XML) Thereof 1,123 with geography defined and 0 with unknown origin.
    Country # Views %
    • 1
    1
     
     
     
     

    Cited

    Latest update: 16 Jul 2024
    Download

    The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

    Short summary
    Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
    Share