Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume III-1
https://doi.org/10.5194/isprs-annals-III-1-143-2016
https://doi.org/10.5194/isprs-annals-III-1-143-2016
02 Jun 2016
 | 02 Jun 2016

COMPARISON OF ZEB1 AND LEICA C10 INDOOR LASER SCANNING POINT CLOUDS

Beril Sirmacek, Yueqian Shen, Roderik Lindenbergh, Sisi Zlatanova, and Abdoulaye Diakite

Keywords: Point Clouds, Indoor Laser Scanning, Zebedee, Leica C10

Abstract. We present a comparison of point cloud generation and quality of data acquired by Zebedee (Zeb1) and Leica C10 devices which are used in the same building interior. Both sensor devices come with different practical and technical advantages. As it could be expected, these advantages come with some drawbacks. Therefore, depending on the requirements of the project, it is important to have a vision about what to expect from different sensors. In this paper, we provide a detailed analysis of the point clouds of the same room interior acquired from Zeb1 and Leica C10 sensors. First, it is visually assessed how different features appear in both the Zeb1 and Leica C10 point clouds. Next, a quantitative analysis is given by comparing local point density, local noise level and stability of local normals. Finally, a simple 3D room plan is extracted from both the Zeb1 and the Leica C10 point clouds and the lengths of constructed line segments connecting corners of the room are compared. The results show that Zeb1 is far superior in ease of data acquisition. No heavy handling, hardly no measurement planning and no point cloud registration is required from the operator. The resulting point cloud has a quality in the order of centimeters, which is fine for generating a 3D interior model of a building. Our results also clearly show that fine details of for example ornaments are invisible in the Zeb1 data. If point clouds with a quality in the order of millimeters are required, still a high-end laser scanner like the Leica C10 is required, in combination with a more sophisticated, time-consuming and elaborative data acquisition and processing approach.