Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

The network robot system: enabling social human-robot interaction in public spaces

Published: 28 January 2013 Publication History

Abstract

What kind of framework is needed to realize social robot applications in real public environments? Based on several years of experience in conducting field studies with social robots in public spaces, we identify key considerations that we have found to be indispensable in the development of robot services. We present a "network robot system" framework, which supports social robot services in five ways: observation of human behavior using environmental sensor networks, structured knowledge sharing, centralized resource and service allocation, global path planning for coordination between robots, and support for selected recognition and decision tasks by a human operator. We describe our network robot system implementation and present a demonstration in a shopping mall, illustrating how such a network robot system framework can be used to support heterogeneous teams of robots providing services in a real public environment.

References

[1]
Bahl, P., & Padmanabhan, V. N. (2000). Enhancements to the RADAR user location and tracking system (Technical Report MSR-TR-2000--12). Microsoft Research.
[2]
Burgard, W., Cremers, A. B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., . . . Thrun, S. (1998). The interactive museum tour-guide robot. In National Conference on Artificial Intelligence (AAAI1998) (pp. 11--18).
[3]
Feil-Seifer, D., & Matarić, M. (2012). Distance-based computational models for facilitating robot interaction with children. Journal of Human-Robot Interaction, 1(1), 55--77.
[4]
Ferri, G., Manzi, A., Salvini, P., Mazzolai, B., Laschi, C., & Dario, P. (2011). Dustcart, an autonomous robot for door-to-door garbage collection: From Dustbot project to the experimentation in the small town of Peccioli. In IEEE International Conference on Robotics and Automation (ICRA2011) (pp. 655--660).
[5]
Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. Robotics & Automation Magazine, IEEE, 4(1), 23--33.
[6]
Garrell, A., & Sanfeliu, A. (2010). Model validation: Robot behavior in people guidance mission using DTM model and estimation of human motion behavior. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2010) (pp. 5836--5841).
[7]
Gerkey, B. P., & Matarić, M. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939--954.
[8]
Glas, D. F., Miyashita, T., Ishiguro, H., & Hagita, N. (2007). Laser tracking of human body motion using adaptive shape modeling. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 602--608).
[9]
Glas, D. F., Miyashita, T., Ishiguro, H., & Hagita, N. (2010). Automatic position calibration and sensor displacement detection for networks of laser range finders for human tracking. Proceedings of 2010 IEEE International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2938--2945.
[10]
Glas, D. F., Satake, S., Kanda, T., & Hagita, N. (2011). An interaction design framework for social robots. Paper presented at the meeting of Robotics: Science and Systems, Los Angeles, CA, USA. Retrieved from http://www.roboticsproceedings.org/rss07/p14.html
[11]
Glas, D. F., Kanda, T., Ishiguro, H., & Hagita, N. (2012). Teleoperation of multiple social robots. IEEE Transactions on Systems, Man, and Cybernetics -- Part A: Systems and Humans, 4(3), 530--544.
[12]
Gross, H.-M., Boehme, H.-J., Schroeter, C., Mueller, S., Koenig, A., Martin, C., . . . Bley, A. (2008). Shopbot: progress in developing an interactive mobile shopping assistant for everyday use. In IEEE International Conference on Systems, Man, and Cybernetics (SMC2008) (pp. 3471--3478).
[13]
Hayashi, K., Shiomi, M., Kanda, T., & Hagita, N. (2011). Friendly patrolling: A model of natural encounters. In Proceedings of Robotics: Science and Systems (RSS 2011). Retrived from http://www.roboticsproceedings.org/rss07/p18.html
[14]
Haumann, A. D., Listmann, K. D., & Willert, V. (2010). DisCoverage: A new paradigm for multi-robot exploration. In IEEE International Conference on Robotics and Automation (ICRA2010) (pp. 929--934).
[15]
Hussein, I. I., & Stipanovic, D. M. (2007). Effective coverage control for mobile sensor networks with guaranteed collision avoidance. IEEE Transactions on Control Systems Technology, 15, 642--657.
[16]
Inaba, M., Kagami, S., Kanehiro, F., Hoshino, Y., & Inoue, H. (2000). A platform for robotics research based on the remote-brained robot approach. International Journal of Robotics Research, 19, 933--954.
[17]
Iwamura, Y., Shiomi, M., Kanda, T., Ishiguro, H., & Hagita, N. (2011). Do elderly people prefer a conversational humanoid as a shopping assistant partner in supermarkets? 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI2011) (pp. 449--456).
[18]
Kanda, T., Shiomi, M., Miyashita, Z., Ishiguro, H., & Hagita, N. (2009). An affective guide robot in a shopping mall. In 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI2009) (pp. 173--180).
[19]
Kanda, T., Glas, D. F., Shiomi, M., & Hagita, N. (2009). Abstracting people's trajectories for social robots to proactively approach customers. IEEE Transactions on Robotics, 25, 1382--1396.
[20]
Kirby, R., Forlizzi, J., & Simmons, R. (2010). Affective social robots. Robotics and Autonomous Systems, 58, 322--332.
[21]
Lee, M. K., Forlizzi, J., Rybski, P. E., Crabbe, F., Chung, W., Finkle, J., . . . Kiesler, S. (2009). The snackbot: Documenting the design of a robot for long-term human-robot interaction. In Proceedings of the 4th ACM/IEEE International Conference on Human-Robot Interaction (pp. 7--14). La Jolla, California, USA: ACM.
[22]
Matsumoto, Y., Wada, T., Nishio, S., Miyashita, T., & Hagita, N. (2010). Scalable and robust multi-people head tracking by combining distributed multiple sensors. Intelligent Service Robotics, 3(1), 29--36.
[23]
Monteiro, S., & Bicho, E. (2010). Attractor dynamics approach to formation control: Theory and application. Autonomous Robots, 29, 331--355.
[24]
Mutlu, B., & Forlizzi, J. (2008). Robots in organizations: The role of workflow, social, and environmental factors in human-robot interaction. In ACM/IEEE International Conference on Human-Robot Interaction (HRI2008) (pp. 287--294).
[25]
Nishio, S., Hagita, N., Miyashita, T., Kanda, T., Mitsunaga, N., Shiomi, M., & Yamazaki, T. (2008). Structuring information on people and environment for supporting robotic services. In Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2008) (pp. 2637--2642).
[26]
OMRON Corporation (n.d.). OKAO vision. In OMRON Global. Retrieved August 19, 2012, from http://www.omron.com/r_d/coretech/vision/okao.html
[27]
Parker, L. E. (1998). ALLIANCE: An architecture for fault tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation, 14, 220--240.
[28]
Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R., Rashid, J., . . . Cho, Y. J. (2008). The PEIS-Ecology project: Vision and results. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2329--2335).
[29]
Sanfeliu, A., Andrade-Cetto, J., Barbosa, M., Bowden, R., Capitán, J., Corominas, A., . . . Spaan, M. T. J. (2010). Decentralized sensor fusion for ubiquitous networking robotics in urban areas. Sensors, 10, 2274--2314.
[30]
Satake, S., Kanda, T., Glas, D. F., Imai, M., Ishiguro, H., & Hagita, N. (2009). How to approach humans? Strategies for social robots to initiate interaction. In 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI2009) (pp. 109--116).
[31]
Shiomi, M., Kanda, T., Ishiguro, H., & Hagita, N. (2007). Interactive humanoid robots for a science museum. IEEE Intelligent Systems, 22(2), 25--32.
[32]
Shiomi, M., Sakamoto, D., Kanda, T., Ishi, C. T., Ishiguro, H., & Hagita, N. (2008). A semi-autonomous communication robot: A field trial at a train station. In ACM/IEEE 3rd Annual Conference on Human-Robot Interaction (HRI2008) (pp. 303--310).
[33]
Shiomi, M., Kanda, T., Glas, D. F., Satake, S., Ishiguro, H., & Hagita, N. (2009). Field trial of networked social robots in a shopping mall. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2009) (pp. 2846--2853).
[34]
Shiwa, T., Kanda, T., Imai, M., Ishiguro, H., & Hagita, N. (2009). How quickly should a communication robot respond? Delaying strategies and habituation effects. International Journal of Social Robotics, 1(2), 141--155.
[35]
Siegwart, R., Arras, K. O., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X., . . . Tomatis, N. (2003). Robox at Expo.02: A large scale installation of personal robots. Robotics and Autonomous Systems, 42, 203--222.
[36]
Sisbot, E. A., Alami, R., Simeon, T., Dautenhahn, K., Walters, M., Woods, S., . . . Nehaniv, C. (2005). Navigation in the presence of humans. In Proceedings of IEEE International Conference on Humanoid Robots (pp. 181--188).
[37]
Takayama, L., Marder-Eppstein, E., Harris, H., & Beer, J. M. (2011). Assisted driving of a mobile remote presence system: System design and controlled user evaluation. In IEEE International Conference on Robotics and Automation (ICRA2011) (pp. 1883--1889).
[38]
Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., . . . Schulz, D. (1999). Minerva: A second-generation museum tour-guide robot. In IEEE International Conference on Robotics and Automation (ICRA1999) (pp. 1999--2005).
[39]
Tomizawa, T., Ohya, A., & Yuta, S. (2006). Remote shopping robot system, -Development of a hand mechanism for grasping fresh foods in a supermarket. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2006) (pp. 4953--4958).
[40]
Trautman, P., & Krause, A. (2010). Unfreezing the robot: Navigation in dense, interacting crowds. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2010) (pp.797--803).
[41]
Vig, L., & Adams, J. A. (2006). Multi-robot coalition formation. IEEE Transactions on Robotics, 22(4), 637--649.
[42]
Weiss, A., Bernhaupt, R., Tscheligi, M., Wollherr, D., Kühnlenz, K., & Buss, M. (2008). A methodological variation for acceptance evaluation of human-robot interaction in public places. In IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2008) (pp. 713--718).

Cited By

View all
  • (2024)Enabling Social Robots to Perceive and Join Socially Interacting Groups using F-formation: A Comprehensive OverviewACM Transactions on Human-Robot Interaction10.1145/3682072Online publication date: 29-Jul-2024
  • (2024)Towards Remote Expert Supported Autonomous Assistant Robots in Shopping EnvironmentsCompanion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction10.1145/3610978.3640735(613-617)Online publication date: 11-Mar-2024
  • (2023)Teleoperation of Humanoid Robots: A SurveyIEEE Transactions on Robotics10.1109/TRO.2023.323695239:3(1706-1727)Online publication date: 1-Jun-2023
  • Show More Cited By

Index Terms

  1. The network robot system: enabling social human-robot interaction in public spaces
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Journal of Human-Robot Interaction
        Journal of Human-Robot Interaction  Volume 1, Issue 2
        Special Issue on HRI Perspectives and Projects from around the Globe
        January 2013
        199 pages

        Publisher

        Journal of Human-Robot Interaction Steering Committee

        Publication History

        Published: 28 January 2013

        Author Tags

        1. field robotics
        2. human-robot interaction
        3. network robot systems
        4. service robots
        5. social robotics

        Qualifiers

        • Research-article

        Funding Sources

        • Ministry of Internal Affairs and Communications of Japan

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)135
        • Downloads (Last 6 weeks)22
        Reflects downloads up to 03 Oct 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Enabling Social Robots to Perceive and Join Socially Interacting Groups using F-formation: A Comprehensive OverviewACM Transactions on Human-Robot Interaction10.1145/3682072Online publication date: 29-Jul-2024
        • (2024)Towards Remote Expert Supported Autonomous Assistant Robots in Shopping EnvironmentsCompanion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction10.1145/3610978.3640735(613-617)Online publication date: 11-Mar-2024
        • (2023)Teleoperation of Humanoid Robots: A SurveyIEEE Transactions on Robotics10.1109/TRO.2023.323695239:3(1706-1727)Online publication date: 1-Jun-2023
        • (2020)On the Intention to Use the Pepper Robot as Communication Channel in a Business ContextProceedings of the 8th International Conference on Human-Agent Interaction10.1145/3406499.3415062(204-211)Online publication date: 10-Nov-2020
        • (2020)Pepper in the Library" Students' First ImpressionsExtended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems10.1145/3334480.3382979(1-9)Online publication date: 25-Apr-2020
        • (2020)Prompting Prosocial Human Interventions in Response to Robot MistreatmentProceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction10.1145/3319502.3374781(211-220)Online publication date: 9-Mar-2020
        • (2019)Can direct address affect user engagement with chatbots embodied in physical spaces?Proceedings of the 1st International Conference on Conversational User Interfaces10.1145/3342775.3342787(1-9)Online publication date: 22-Aug-2019
        • (2017)Hello Pepper, May I Tickle You?Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction10.1145/3029798.3038362(53-54)Online publication date: 6-Mar-2017
        • (undefined)Privacy First: Designing Responsible and Inclusive Social Robot Applications for in the Wild Studies2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)10.1109/RO-MAN46459.2019.8956461(1-8)

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media