中国大陆活动地块边界带主要断层的强震震间晚期综合判定

邵志刚, 武艳强, 季灵运, 刁法启, 石富强, 李玉江, 龙锋, 张辉, 朱良玉, 陈长云, 王武星, 魏文薪, 王芃, 刘晓霞, 刘琦, 潘正洋, 尹晓菲, 刘月, 冯蔚, 邹镇宇, 曹建玲, 徐晶, 韩立波, 程佳, 鲁人齐, 徐岳仁, 李西, 孙鑫喆. 2022. 中国大陆活动地块边界带主要断层的强震震间晚期综合判定. 地球物理学报, 65(12): 4643-4658, doi: 10.6038/cjg2022P0489
引用本文: 邵志刚, 武艳强, 季灵运, 刁法启, 石富强, 李玉江, 龙锋, 张辉, 朱良玉, 陈长云, 王武星, 魏文薪, 王芃, 刘晓霞, 刘琦, 潘正洋, 尹晓菲, 刘月, 冯蔚, 邹镇宇, 曹建玲, 徐晶, 韩立波, 程佳, 鲁人齐, 徐岳仁, 李西, 孙鑫喆. 2022. 中国大陆活动地块边界带主要断层的强震震间晚期综合判定. 地球物理学报, 65(12): 4643-4658, doi: 10.6038/cjg2022P0489
SHAO ZhiGang, WU YanQiang, JI LingYun, DIAO FaQi, SHI FuQiang, LI YuJiang, LONG Feng, ZHANG Hui, ZHU LiangYu, CHEN ChangYun, WANG WuXing, WEI WenXin, WANG Peng, LIU XiaoXia, LIU Qi, PAN ZhengYang, YIN XiaoFei, LIU Yue, FENG Wei, ZOU ZhenYu, CAO JianLing, XU Jing, HAN LiBo, CHENG Jia, LU RenQi, XU YueRen, LI Xi, SUN XinZhe. 2022. Comprehensive determination for the late stage of the interseismic period of major faultsin the boundary zone of active tectonic blocks in Chinese mainland. Chinese Journal of Geophysics (in Chinese), 65(12): 4643-4658, doi: 10.6038/cjg2022P0489
Citation: SHAO ZhiGang, WU YanQiang, JI LingYun, DIAO FaQi, SHI FuQiang, LI YuJiang, LONG Feng, ZHANG Hui, ZHU LiangYu, CHEN ChangYun, WANG WuXing, WEI WenXin, WANG Peng, LIU XiaoXia, LIU Qi, PAN ZhengYang, YIN XiaoFei, LIU Yue, FENG Wei, ZOU ZhenYu, CAO JianLing, XU Jing, HAN LiBo, CHENG Jia, LU RenQi, XU YueRen, LI Xi, SUN XinZhe. 2022. Comprehensive determination for the late stage of the interseismic period of major faultsin the boundary zone of active tectonic blocks in Chinese mainland. Chinese Journal of Geophysics (in Chinese), 65(12): 4643-4658, doi: 10.6038/cjg2022P0489

中国大陆活动地块边界带主要断层的强震震间晚期综合判定

  • 基金项目:

    国家重点研发计划(2017YFC1500501)资助

详细信息
    作者简介:

    邵志刚, 男, 1977年生, 研究员, 2007年博士毕业于中国科学技术大学, 主要从事地球动力学与地震活动性方面的研究.E-mail: shaozg0911@126.com

  • 中图分类号: P313, P315

Comprehensive determination for the late stage of the interseismic period of major faultsin the boundary zone of active tectonic blocks in Chinese mainland

  • 由于中国大陆强震主要分布在活动地块边界带上,所以活动地块边界带主要断层成为我国大陆型强震研究的重要目标,各强震孕育阶段的判定是大陆型强震原地复发的动力学过程研究主要内容,而目标断层是否处于震间晚期也是强震时间预测的重要研究基础.虽然地震短临预测仍存在诸多科学难题,但最近20年来全球若干强震相关研究表明,如果放宽预测时间尺度的要求,有些方法也可用于强震震间晚期的判定.本文以中国大陆活动地块边界带的391条断层段为研究目标,利用地震地质的强震破裂空段、大地测量的断层运动闭锁段、地震活动的中小地震稀疏段、数值模拟的库仑应力增强显著段等方法,综合判定中国大陆活动地块边界带可能处于震间晚期的主要断层段.本文结果仅是初步结果,该结果的可靠程度有赖于监测条件,其科学性有赖于大陆型强震孕育发生动力学过程的认识水平,虽然本文尝试给出中国大陆活动地块边界带主要断层的震间晚期判定结果,但其结果可靠程度、精细程度等均存在巨大的改善空间.最后,从断层孕震阶段判定需求的角度,本文尝试给出大陆型震源物理模型的具体基础模型,期望起到抛砖引玉的作用,也期望更多地震学家关注大陆型强震的物理机制及其预测基础研究.

  • 加载中
  • 图 1 

    中国大陆地区活动地块与历史强震空间分布图

    Figure 1. 

    Active tectonic blocks in Chinese mainland and its spatial distribution of historical strong earthquakes

    图 2 

    中国大陆地区活动地块边界带及其主要断层空间分布图(张培震等,2003张国民等,2004)

    Figure 2. 

    The distribution of the boundary zone of active tectonic block and main faults in Chinese mainland (Zhang et al., 2003; Zhang et al., 2004)

    图 3 

    中国大陆活动地块边界带主要断层与强震破裂空段分布图(张培震等,2003张国民等,2004徐锡伟等,2017)

    Figure 3. 

    The distribution of main active faults and some strong seismic rupture gaps in the boundary zone of active tectonic blocks in Chinese mainland (Zhang et al., 2003; Zhang et al., 2004; Xu et al., 2017)

    图 4 

    中国大陆强震发生时离逝率的概率密度函数(a)及积累概率函数(b)

    Figure 4. 

    Probability density function (a) and accumulation probability function (b) of lapse rate during strong earthquakes in Chinese mainland

    图 5 

    断层运动不同阶段地壳地表变形速率空间分布示意图(Meade and Hager, 2005)

    Figure 5. 

    The map of spatial distribution of crustal surface deformation rate at different stages of fault movement (Meade and Hager, 2005)

    图 6 

    中国大陆活动地块边界带主要断层与各断层闭锁程度结果分布图

    Figure 6. 

    The distribution of main active faults and their locking degree in the boundary zone of active tectonic blocks in Chinese mainland

    图 7 

    不同断层闭锁深度反演分析(a),垂向反演空间分辨率和精度(b)

    Figure 7. 

    Inversion of different fault locking depths (a), Spatial resolution and accuracy of vertical inversion (b)

    图 8 

    2008年汶川8.0级地震在鲜水河断裂带色拉哈—康定段引起的库仑应力变化

    Figure 8. 

    Coulomb stress changes caused by the 2008 MS8.0 Wenchuan earthquake in the Salah-Kangding segment of the Xianshuihe fault zone

    图 9 

    中国大陆活动地块边界带主要断层与库仑应力增强段判定结果分布图

    Figure 9. 

    The distribution of main active faults and their Coulomb stress increasing segments in the boundary zone of active tectonic blocks in Chinese mainland

    图 10 

    中国大陆活动地块边界带主要断层与中小地震稀疏段判定结果分布图

    Figure 10. 

    The distribution of main active faults and their small-moderate seismicity scarce segments in the boundary zone of active tectonic blocks in Chinese mainland

    图 11 

    4类方法的权重分配规则确定震间晚期判定系数

    Figure 11. 

    The judgment coefficients of the late stage of interseismic period determined by the rules of the weight allocation in four kinds of methods

    图 12 

    中国大陆活动地块边界带主要断层及其震间晚期判定系数空间分布图

    Figure 12. 

    The spatial distribution of major faults in the boundary zone of active tectonic blocks in Chinese mainland and their judgment coefficients of the late stage of interseismic period

    图 13 

    中国大陆活动地块边界带主要断层震间晚期判定所需震源物理模型

    Figure 13. 

    Physics of earthquake source model required for determining late stage of interseismic period of major faults in the boundary zone of active tectonic blocks in Chinese mainland

    表 1 

    全球10次强震发震断层活动状态预测情况汇总表

    Table 1. 

    Summary of the predicted fault activity status of 10 strong earthquakes worldwide

    序号 地震事件 强震破裂空段 断层运动闭锁段 中小地震稀疏段 库仑应力增强段 参考文献
    1 2015年尼泊尔8.1级 500 km空段 闭锁率>0.8 >0.15 MPa Avouac et al., 2015; Bilham et al., 2001
    2 2014年智利8.1级 400 km空段 闭锁率>0.6 >0.1 MPa Schurr et al., 2014
    3 2011年日本9.0级 500 km空段 闭锁率>0.8 震前23年中等地震活动弱 >0.2 MPa Hashimoto et al., 2009; Loveless and Meade, 2010; Toda and Enescu, 2011; Kanamori et al., 2006; Katsumata, 2011
    4 2010年智利8.8级 200 km空段 闭锁率>0.8 >0.1 MPa Madariaga et al., 2010
    5 2010年海地7.3级 200 km空段 闭锁率>0.9 >0.04 MPa Prentice et al., 2003
    6 2008年中国汶川8.0级 200 km空段 闭锁率>0.9 >0.01 MPa 闻学泽等,2009赵静等,2012
    7 2004年苏门答腊9级 500 km空段 闭锁深度达孕震层下界面深度 震前13年中等地震活动偏弱 >0.1 MPa Katsumata, 2015; Simoes et al., 2004
    8 1999年中国台湾集集7.6级 200 km空段 - 震前数十年中小地震活动偏弱 >0.01 MPa Lin, 2001
    9 1999年土耳其7.8级 150 km空段 - - >0.01 MPa Bohnhoff et al., 2013; Nalbant et al., 1998; Stein et al., 1997
    10 1999年美国加州7.1级 - - - >0.01 MPa Freed et al., 2001
    11 2013年中国芦山7.0级 70 km空段 闭锁率>0.9 震前20年中小地震活动偏弱 >0.01 MPa 闻学泽等,2009赵静等,2012Toda et al., 2008
    注:其中红色是震前预测性工作,黑色是震后回溯性工作.
    下载: 导出CSV
  •  

    Aki K. 2002.5-Synthesis of earthquake science information and its public transfer: a history of the Southern California Earthquake Center. International Geophysics, 81: 39-49.

     

    Avouac J P, Meng L S, Wei S J, et al. 2015. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8(9): 708-711. doi: 10.1038/ngeo2518

     

    Avouac J P. 2015. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annual Review of Earth and Planetary Sciences, 43: 233-271. doi: 10.1146/annurev-earth-060614-105302

     

    Bilham R, Gaur V K, Molnar P. 2001. Himalayan seismic hazard. Science, 293(5534): 1442-1444. doi: 10.1126/science.1062584

     

    Bohnhoff M, Bulut F, Dresen G, et al. 2013. An earthquake gap south of Istanbul. Nature Communications, 4(1): 1999, doi: 10.1038/ncomms2999.

     

    Bollinger L, Sapkota S N, Tapponnier P, et al. 2014. Estimating the return times of great Himalayan earthquakes in eastern Nepal: evidence from the Patu and Bardibas strands of the main frontal thrust. Journal of Geophysical Research: Solid Earth, 119(9): 7123-7163. doi: 10.1002/2014JB010970

     

    Cavalié O, Lasserre C, Doin M P, et al. 2008. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth and Planetary Science Letters, 275(3-4): 246-257. doi: 10.1016/j.epsl.2008.07.057

     

    Chen Y T. 2009. Earthquake prediction: retrospect and prospect. Science in China Series D: Earth Science (in Chinese), 39(12): 1633-1658.

     

    Copley A. 2008. Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophysical Journal International, 174(3): 1081-1100. doi: 10.1111/j.1365-246X.2008.03853.x

     

    Deng J S, Gurnis M, Kanamori H, et al. 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake. Science, 282(5394): 1689-1692. doi: 10.1126/science.282.5394.1689

     

    Deng Q D, Wen X Z. 2008. A review on the research of active tectonics—History, progress and suggestions. Seismology and Geology (in Chinese), 30(1): 1-30. doi: 10.3969/j.issn.0253-4967.2008.01.002

     

    Diao F Q, Xiong X, Wang R J, et al. 2014. Overlapping post-seismic deformation processes: afterslip and viscoelastic relaxation following the 2011 MW9.0 Tohoku (Japan) earthquake. Geophysical Journal International, 196(1): 218-229. doi: 10.1093/gji/ggt376

     

    Field E H, Arrowsmith R J, Biasi G P, et al. 2014. Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time-independent model. Bulletin of the Seismological Society of America, 104(3): 1122-1180. doi: 10.1785/0120130164

     

    Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer. Nature, 411(6834): 180-183. doi: 10.1038/35075548

     

    Hashimoto C, Noda A, Sagiya T, et al. 2009. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nature Geoscience, 2(2): 141-144. doi: 10.1038/ngeo421

     

    Jiang G Y, Xu X W, Chen G H, et al. 2015. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3-D viscoelastic interseismic coupling model. Journal of Geophysical Research: Solid Earth, 120(3): 1855-1873, doi: 10.1002/2014JB011492.

     

    Jolivet R, Simons M, Agram P S, et al. 2015. Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophysical Research Letters, 42(2): 297-306, doi: 10.1002/2014GL062222.

     

    Jordan T H. 2006. Earthquake system science in Southern California. Bulletin of the Earthquake Research Institute, the University of Tokyo, 81: 211-219.

     

    Kagan Y Y, Jackson D D. 1991. Seismic gap hypothesis: ten years after. Journal of Geophysical Research: Solid Earth, 96(B13): 21419-21431. doi: 10.1029/91JB02210

     

    Kanamori H, Miyazawa M, Mori J. 2006. Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms. Earth, Planets and Space, 58(12): 1533-1541. doi: 10.1186/BF03352657

     

    Kanamori H. 2012. Earthquake hazards: putting seismic research to most effective use. Nature, 483(7388): 147-148. doi: 10.1038/483147a

     

    Katsumata K. 2011. A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M=9.0). Earth, Planets and Space, 63(7): 709-712. doi: 10.5047/eps.2011.06.033

     

    Katsumata K. 2015. A long-term seismic quiescence before the 2004 sumatra (MW9.1) earthquake. Bulletin of the Seismological Society of America, 105(1): 167-176. doi: 10.1785/0120140116

     

    Li Y C, Shan X J, Qu C Y, et al. 2018. Crustal deformation of the Altyn Tagh fault based on GPS. Journal of Geophysical Research: Solid Earth, 123(11): 10309-10322, doi. 10.1029/2018jb015814. doi: 10.1029/2018JB015814

     

    Lin C H. 2001. The 1999 Taiwan earthquake: a proposed stress-focusing, heel-shaped model. Bulletin of the Seismological Society of America, 91(5): 1053-1061.

     

    Long F, Wen X Z, Ruan X, et al. 2015. A more accurate relocation of the 2013 MS7.0 Lushan, Sichuan, China, earthquake sequence, and the seismogenic structure analysis. Journal of Seismology, 19(3): 653-665. doi: 10.1007/s10950-015-9485-0

     

    Lorenzo-Martín F, Roth F, Wang R J. 2006. Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile. Geophysical Journal International, 164(1): 75-87. doi: 10.1111/j.1365-246X.2005.02803.x

     

    Loveless J P, Meade B J. 2010. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. Journal of Geophysical Research: Solid Earth, 115(B2): B02410, doi: 10.1029/2008JB006248.

     

    Madariaga R, Métois M, Vigny C, et al. 2010. Central chile finally breaks. Science, 328(5975): 181-182. doi: 10.1126/science.1189197

     

    Matsu'ura M, Jackson D D, Cheng A. 1986. Dislocation model for aseismic crustal deformation at Hollister, California. Journal of Geophysical Research: Solid Earth, 91(B12): 12661-12674. doi: 10.1029/JB091iB12p12661

     

    McCaffrey R, Long M D, Goldfinger C, et al. 2000. Rotation and plate locking at the southern Cascadia subduction zone. Geophysical Research Letters, 27(19): 3117-3120. doi: 10.1029/2000GL011768

     

    McCaffrey R. 2002. Crustal block rotations and plate coupling. //Stein S, Freymueller J T eds. Plate Boundary Zones. Washington: American Geophysical Union, 101-122.

     

    Meade B J, Hager B H. 2005. Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research: Solid Earth, 110(B3): B03403, doi: 10.1029/2004JB003209.

     

    Nalbant S S, Hubert A, King G C P. 1998. Stress coupling between earthquakes in Northwest Turkey and the North Aegean Sea. Journal of Geophysical Research: Solid Earth, 103(B10): 24469-24486. doi: 10.1029/98JB01491

     

    Nishenko S P. 1991. Circum-Pacific seismic potential: 1989—1999. Pure and Applied Geophysics, 135(2): 169-259. doi: 10.1007/BF00880240

     

    Nur A, Mavko G. 1974. Postseismic viscoelastic rebound. Science, 183(4121): 204-206. doi: 10.1126/science.183.4121.204

     

    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4): 1135-1154. doi: 10.1785/BSSA0750041135

     

    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018

     

    Olson J A. 1990. Seismicity in the twenty years preceding the Loma Prieta California earthquake. Geophysical Research Letters, 17(9): 1429-1432. doi: 10.1029/GL017i009p01429

     

    Prentice C S, Mann P, Pena L R, et al. 2003. Slip rate and earthquake recurrence along the central Septentrional fault, North American-Caribbean plate boundary, Dominican Republic. Journal of Geophysical Research: Solid Earth, 108(B3): 2149, doi: 10.1029/2001JB000442.

     

    Ran Y K, Deng Q D. 1999. History, status and trend about the research of paleoseismology. Chinese Science Bulletin, 44(10): 880-889. doi: 10.1007/BF02885057

     

    Ran Y K, Wang H, Yang H L, et al. 2014. Key techniques and several cases analysis in paleoseismic studies in China's mainland (4)—Sampling and event analysis of paleoseismic dating methods. Seismology and Geology (in Chinese), 36(4): 939-955. doi: 10.3969/j.issn.0253-4967.2014.04.001

     

    Reid H F. 1910. The mechanics of the earthquake, the California earthquake of April 18, 1906 Report of the State Investigation Commission, Vol. 2. Washington: Carnegie Institution of Washington, 16-28.

     

    Savage J C, Burford R O. 1973. Geodetic determination of relative plate motion in central California. Journal of Geophysical Research, 78(5): 832-845. doi: 10.1029/JB078i005p00832

     

    Savage J C, Prescott W H. 1973. Precision of Geodolite distance measurements for determining fault movements. Journal of Geophysical Research, 78(26): 6001-6008. doi: 10.1029/JB078i026p06001

     

    Scholz C H. 1998. Earthquakes and friction laws. Nature, 391(6662): 37-42. doi: 10.1038/34097

     

    Schurr B, Asch G, Hainzl S, et al. 2104. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512(7514): 299-302.

     

    Shi Y L, Cao J L. 2008. Effective viscosity of China continental lithosphere. Earth Science Frontiers (in Chinese), 15(3): 82-95. doi: 10.1016/S1872-5791(08)60064-0

     

    Simoes M, Avouac J P, Cattin R, et al. 2004. The Sumatra subduction zone: a case for a locked fault zone extending into the mantle. Journal of Geophysical Research: Solid Earth, 109(B10): B10402, doi: 10.1029/2003JB002958.

     

    Stein R S, Barka A A, Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3): 594-604. doi: 10.1111/j.1365-246X.1997.tb05321.x

     

    Sykes L R. 1971. Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and the Aleutians. Journal of Geophysical Research, 76(32): 8021-8041. doi: 10.1029/JB076i032p08021

     

    Toda S, Enescu B. 2011. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast. Earth, Planets and Space, 63(3): 171-185. doi: 10.5047/eps.2011.01.004

     

    Toda S, Lin J, Meghraoui M, et al. 2008.12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35(17): L17305, doi: 10.1029/2008GL034903.

     

    Wang R J, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computers & Geosciences, 32(4): 527-541.

     

    Wen X Z, Ma S L, Xu X W, et al. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. doi: 10.1016/j.pepi.2008.04.013

     

    Wen X Z, Zhang P Z, Du F, et al. 2009. The background of historical and modern seismic activities of the occurrence of the 2008 MS8.0 Wenchuan, Sichuan, earthquake. Chinese Journal of Geophysics (in Chinese), 52(2): 444-454.

     

    Xu J, Shao Z G, Ma H S, et al. 2013. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone. Chinese Journal of Geophysics (in Chinese), 56(4): 1146-1158, doi: 10.6038/cjg20130410.

     

    Xu X W, Wu X Y, Yu G H, et al. 2017. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in China's mainland. Seismology and Geology (in Chinese), 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001

     

    Zhang G M, Ma H S, Wang H, et al. 2004. The relationship between active blocks and strong earthquakes in mainland of China. Science in China Series D: Earth Science (in Chinese), 34(7): 591-599.

     

    Zhang G M, Ma H S, Wang H, et al. 2005. Boundaries between active-tectonic blocks and strong earthquakes in the China mainland. Chinese Journal of Geophysics (in Chinese), 48(3): 602-610. doi: 10.1002/cjg2.693

     

    Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D: Earth Sciences, 46(2): 13-24.

     

    Zhang P Z, Deng Q D, Zhang Z Q, et al. 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China. Scientia Sinica Terrae (in Chinese), 43(10): 1607-1620. doi: 10.1360/zd-2013-43-10-1607

     

    Zhao J, Jiang Z S, Wu Y Q, et al. 2012. Study on fault locking and fault slip deficit of the Longmenshan fault zone before the Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 55(9): 2963-2972, doi: 10.6038/j.issn.0001-5733.2012.09.015.

     

    《2006~2020年中国大陆地震危险区与地震灾害损失预测研究》项目组. 2007.2006~2020年中国大陆地震危险区与地震灾害损失预测研究. 北京: 地震出版社.

     

    M7专项工作组. 2012. 中国大陆大地震中-长期危险性研究. 北京: 地震出版社.

     

    陈运泰. 2009. 地震预测: 回顾与展望. 中国科学D辑: 地球科学, 39(12): 1633-1658. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200912001.htm

     

    邓起东, 徐锡伟, 于贵华. 1994. 中国大陆活动断裂分区特征及其成因. //中国活动断裂研究. 北京: 地震出版社, 1-15.

     

    邓起东, 闻学泽. 2008. 活动构造研究——历史、进展与建议. 地震地质, 30(1): 1-30. doi: 10.3969/j.issn.0253-4967.2008.01.002

     

    力武常次. 1978. 地震预报. 冯锐, 周新华译. 北京: 地质出版社.

     

    冉勇康, 邓起东. 1999. 古地震学研究的历史、现状和发展趋势. 科学通报, 44(1): 12-20. doi: 10.3321/j.issn:0023-074X.1999.01.003

     

    冉勇康, 王虎, 杨会丽等. 2014. 中国大陆古地震研究的关键技术与案例解析(4)——古地震定年技术的样品采集和事件年代分析. 地震地质, 36(4): 939-955. doi: 10.3969/j.issn.0253-4967.2014.04.001

     

    石耀霖, 曹建玲. 2008. 中国大陆岩石圈等效粘滞系数的计算和讨论. 地学前缘, 15(3): 82-95. doi: 10.3321/j.issn:1005-2321.2008.03.006

     

    时振梁, 汪良谋, 傅征祥等. 1997. 中国大陆中长期强震危险性预测方法研究. 北京: 海洋出版社.

     

    闻学泽. 1995. 活动断裂地震潜势的定量评估. 北京: 地震出版社.

     

    闻学泽, 张培震, 杜方等. 2009.2008年汶川8.0级地震发生的历史与现今地震活动背景. 地球物理学报, 52(2): 444-454. http://www.geophy.cn/article/id/cjg_923

     

    徐晶, 邵志刚, 马宏生等. 2013. 鲜水河断裂带库仑应力演化与强震间关系. 地球物理学报, 56(4): 1146-1158, doi: 10.6038/cjg20130410. http://www.geophy.cn/article/doi/10.6038/cjg20130410

     

    徐锡伟, 韩竹军, 杨晓平等. 2016. 中国及邻近地区地震构造图. 北京: 地震出版社.

     

    徐锡伟, 吴熙彦, 于贵华等. 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用. 地震地质, 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001

     

    张国民, 马宏生, 王辉等. 2004. 中国大陆活动地块与强震活动关系. 中国科学D辑: 地球科学, 2004(7): 591-599. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407000.htm

     

    张国民, 马宏生, 王辉等. 2005. 中国大陆活动地块边界带与强震活动. 地球物理学报, 48(3): 602-610. doi: 10.3321/j.issn:0001-5733.2005.03.018 http://www.geophy.cn/article/id/cjg_718

     

    张培震, 邓起东, 张国民等. 2003. 中国大陆的强震活动与活动地块. 中国科学D辑, 33(S1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm

     

    张培震, 邓起东, 张竹琪等. 2013. 中国大陆的活动断裂、地震灾害及其动力过程. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm

     

    赵静, 江在森, 武艳强等. 2012. 汶川地震前龙门山断裂带闭锁程度和滑动亏损分布研究. 地球物理学报, 55(9): 2963-2972, doi: 10.6038/j.issn.0001-5733.2012.09.015. http://www.geophy.cn/article/doi/10.6038/j.issn.0001-5733.2012.09.015

  • 加载中

(13)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-07-12
修回日期:  2022-08-27
上线日期:  2022-12-10

目录