
Computer Science and Information Systems 11(2):525–548 DOI: 10.2298/CSIS130120022D

User-Centric Privacy-Preserving Statistical Analysis of
Ubiquitous Health Monitoring Data?

George Drosatos1,2 and Pavlos S. Efraimidis1,2

1 Dept. of Electrical and Computer Engineering, Democritus University of Thrace
University Campus, 67100 Xanthi, Greece

{gdrosato,pefraimi}@ee.duth.gr
2 ATHENA, Research & Innovation Center, University Campus, 67100 Xanthi, Greece

Abstract. In this paper, we propose a user-centric software architecture for man-
aging Ubiquitous Health Monitoring Data (UHMD) generated from wearable sen-
sors in a Ubiquitous Health Monitoring System (UHMS), and examine how these
data can be used within privacy-preserving distributed statistical analysis. Two are
the main goals of our approach. First, to enhance the privacy of patients. Second,
to decongest the Health Monitoring Center (HMC) from the enormous amount
of biomedical data generated by the users’ wearable sensors. In our solution per-
sonal software agents are used to receive and manage the personal medical data
of their owners. Moreover, the personal agents can support privacy-preserving dis-
tributed statistical analysis of the health data. To this end, we present a crypto-
graphic protocol based on secure multi-party computations that accept as input cur-
rent or archived values of users’ wearable sensors. We describe a prototype im-
plementation that performs a statistical analysis on a community of independent
personal agents. Finally, experiments with up to several hundred agents confirm the
viability and the effectiveness of our approach.

Keywords: privacy, ubiquitous health data, privacy-preserving statistical analysis,
personal software agent, secure multi-party computation.

1. Introduction

The requirement to provide health care to special groups of people who have the need of
continuous health monitoring is an integral part of today’s society. Moreover, the number
of people who need such health monitoring services is increasing. An important reason for
this is the aging of the populations, which constitutes a social and economical challenge
especially for the developed countries [1]. Related researches which have been carried
out both in the European Union [2] and the United States [3] indicate that the number
of people over the age of 65 is increasing. A similar increase is expected to take place
throughout the developed world. Many elderly people suffer from chronic diseases that
require health care and frequent visits to hospitals. For people of this category, it is impor-
tant to continuously monitor the state of their health. Effective monitoring of the health
state can improve the quality of the patients’ life or even save their life, while simultane-
ously reducing the cost of health care [4, 5].
? Preliminary parts of this work were presented at the 4rd International Conference on PErvasive

Technologies Related to Assistive Environments (PETRA 2011) and the 8th International
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The rapid development of the wearable sensors technology led to the appearance and
the implementation of prototype Ubiquitous Health Monitoring Systems (UHMS’s) [4–
6]. Moreover, there is a plethora of researches in the area of ambient assistive living
services [7–9] and controlled access to ubiquitous hospital information [10]. The objective
of a UHMS is to provide continuous health monitoring, both at home and outdoors. People
need to have their health condition under control not only when at home, but wherever
they are. One of the main features of a UHMS is to automatically generate alerts to notify
the family or the patient’s doctor about a possible health emergency so they should rush to
their help to him. Examples of the data used for the detection of a possible health incident,
as they are reported in [11], are: heart rate, blood pressure, galvanic skin response, skin
temperature, heat flux, subject motion, speed and the covered distance.

Although ubiquitous computing is an opportunity for improving the health sector;
however, for ubiquitous health monitoring technology to become feasible, a number of
challenges are facing its presence [12]. These challenges are related to the deployment of
this technology [13] and to issues such as resource constraints, user mobility, cost, hetero-
geneity of devices, scalability, security and privacy. While in [14] the author believes that
challenges associated to sensor technology features also exist, such as Quality of Service
(QoS), low power consumption and security of the wireless devices.

Privacy is an important issue of UHMS and health-related applications in general,
since health data are sensitive personal data of patients. Privacy-related legislation like the
European Data Protection Directive [15] and the HIPAA (Health Insurance Portability and
Accountability Act) [16] explicitly define the rules for protecting the privacy of patients.
The so far general architecture of a UHMS requires that all personal medical data (such as
those reported above) which are produced by the patients’ wearable sensors are collected
and stored in a central service, specifically at the Health Monitoring Center (HMC) [4, 5].
The HMC is responsible not only for the collection and storage, but also for the control of
these critical personal data. However, this technique runs significant risks for the security
of the actual data, for the privacy of the monitored people, and, moreover, has an enormous
computational and storage cost for the HMC. The distributed architecture that we propose
in this work can offer the required scalability to handle large or even huge amounts of
personal data.

At the same time, statistics of personal health data can be of high value for medical
purposes. For example, the use of statistical methods is an integral part of medical re-
search. A medical statistic may comprise a wide variety of data types, the most common
of which are based on vital records (birth, death, marriage), morbidity (incidence of dis-
ease in a population) and mortality (the number of people who die of a certain disease in
relation with the total number of people). Additional personal data items may needed for
other well-known statistical computations, like the demographic distribution of a disease
based on geographic, ethnic, and gender criteria, the socioeconomic status and education
of health care professionals, and the costs of health care services.

In this work, we deal with the privacy-enhanced management of ubiquitous health
monitoring data. Moreover, we describe how this data can be used within privacy-pre-
serving distributed statistical analysis. Regarding the first deal, we suggest the decentral-
ization of the collection of medical data at the users’ side. This is achieved by the use
of personal agents that will be continuously online and collect the medical data of their
owners. In addition to the data that are obtained by wearable sensors, the agents may also
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have other data, such as demographic elements about the patient and further information
about his health records, as well. The additional data can be used to support filtering of
the results within distributed computations. Apart from the management of the personal
data, the patient agent’s automatically monitors the different changes in medical data with
a dedicated health component. As soon as the health component detects aberrations in the
raw health data, it informs the HMC by giving it access to the user’s data so as to de-
cide itself for the danger of the situation. In our approach, the usage of the agents does
not block the remote monitoring of the patient’s health by an authorized doctor; it only
ensures the controlled, user-aware, access to these sensitive data.

For the statistical analysis, we propose a cryptographic protocol based on secure multi-
party computations that accept as input current or archived values of users’ wearable
sensors. This distributed computation is performed by a community of the patients’ per-
sonal software agents. We design an algorithm for the distributed computation, present a
prototype implementation of the proposed solution, and obtain experimental results that
confirm the viability and the effectiveness of our approach.

Main Advantages of Our Solution

The personal data management approach proposed in this work achieves a number of
advantages in comparison with the existing architecture of a UHMS, and simultaneously
enhances the privacy of the patients in such a system. The main advantages are:

– Only controlled access to the health data is provided. Every data access is logged by
keeping who retrieved which data items and when this happened.

– The whole history of medical data, including the raw sensors’ data, can be kept in the
agent, whereas this might not be possible on the HMC for practical reasons. At the
same time, decongestion of the HMC from the large amount of data, is achieved. This
can make the computational requirements of the central servers more tolerable.

– Less risk of massive theft of personal data since they are distributed at the users’ side.
– Option for usability of these data by authorized third independent services or for

performing distributed computations.

On the other hand, important advantages of our statistical analysis approach in com-
parison to traditional statistical analysis techniques are:

– Utilizing valuable, sensitive, up-to-date personal data while ensuring privacy.
– Simplifying the process and significantly reducing the time and cost for conducting a

statistical analysis.

A prerequisite for our approach is that each patient must have a personal software
agent at his disposal and permanent access to the Internet. The computational require-
ments for the personal agent can be fulfilled with commodity hardware and hence its cost
is not high. Thus, it is plausible to assume that patients with a UHMS can afford the extra
cost for such an agent.

Our Contributions

– We present a user-centric software architecture for managing UHMD generated from
wearable sensors in a UHMS, that allows controlled access to the health data, decon-
gests the HMC, and enhances the privacy of users.
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– We propose the usage of personal software agents for the management of biomedical
data at the user side.

– We implement a prototype of the agents for this work.
– We present a privacy-preserving cryptographic protocol for distributed statistical anal-

ysis of the health data within agent communities.
– We validate our approach with a set of experiments on generated biomedical data in

a community of real software agents.

Outline. The rest of this paper is organized as follows. In Section 2, we describe related
work. In Section 3, we introduce the management architecture of our privacy-enhanced
UHMS. In Section 4, we propose a system for performing privacy-preserving distributed
statistical analysis on ubiquitous health data. Finally, conclusions of this work are given
in Section 5.

2. Related Work

Personal data of users are commonly stored in central databases at the service provider’s
side. In this way, the users have essentially no control over the use of their personal data.
The idea that individuals should own their personal information themselves and decide
how this information is used, is discussed in [17]. A point made in [18] is that, although
considering personal data the owner’s private property is a very appealing idea, it would
be rather difficult to practically apply it and legally enforce it. The argument that personal
data would be safer at the user’s side is also examined in [19].

To address privacy concerns, different kinds of frameworks that are related to per-
sonal data have recently been proposed. In particular, privacy sensitive management of
personal data in ubiquitous computing is discussed in [20], and storing personal data in
an individual’s mobile device is examined in [21]. Of particular importance for the man-
agement of health data in this work is Polis [22], a framework for managing personal data
at the owner’s side. Polis offers privacy-enhanced management of personal data based on
the principle that each individual has absolute control on his personal data, which remain
permanently at the side of their owner and only there. Each user of Polis is a unique en-
tity which is represented by a corresponding Polis agent. The Polis agents constitute the
backbone of the Polis architecture; they are used to manage the personal data of an entity
and provide controlled access at the entity’s data. The service providers request personal
data items of users from their personal agents. The agents provide the requested data if
there is a corresponding policy and/or license agreement. In this work, we extend Polis
agents with additional features and adapt the decentralized, agent-based approach of Polis
for the management of the patients’ personal data. Some work related to Polis has been
done within the DISCREET project where a rich but also complicated framework for
privacy protection has been proposed [23]. This framework is built on the principle that
personal data is kept inside a “Discreet Box”, located at the service provider’s side. An
agent-based solution to address usability issues related to P3P (Platform for Privacy Pref-
erences Project) is presented in [24]. General surveys on privacy enhancing technologies
are given in [25, 26].

In the second and main part of this work, we present a solution for distributed privacy-
preserving statistical analysis of personal health data. Our approach is based on secure
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multi-party computations (MPCs). The general model of a MPC was firstly proposed by
Yao [27] and later was followed by many others [28, 29]. In general, a MPC problem con-
cerns the calculation of a function with inputs from many parties, where the input of each
participant is not disclosed to anyone. The only information that should be disclosed is
the output of the computation. The general solution for MPC presented in [27] is powerful
but commonly leads to impractical implementations.

A secure two-party computation (S2C) for the calculation of statistics from two sep-
arate data sets is presented in [30]. Each data set is owned by a company and is not
disclosed during the computation. Similar results are shown in [31], this time focusing
on linear regression and classification and without using cryptographic techniques. Some
indicative works from the related field of privacy-preserving data mining are [32–34]. A
major difference of our work from the above is that in our approach every participant is in
control of his health data and that the distributed computation is performed by the commu-
nity of the personal software agents. Using software agents as building blocks for software
systems is an established practice; see for example [35] and for a recent survey [36].

Another approach for statistics on personal data is anonymization, i.e., the sanitiza-
tion of a data collection by removing identifying information. The data anonymization ap-
proach and some of its limitations are discussed for example in [37–39]. Data anonymiza-
tion applies to data collections in central databases and is not directly comparable to our
decentralized approach. Finally, an example of an efficient privacy-preserving distributed
computation is given in [40], where personal agents of doctors execute a distributed pro-
tocol to identify the nearest doctor to an emergency. The focus of the present work is on
privacy-preserving distributed statistical analysis using a massive number of participants.

3. Privacy-Enhanced Management of UHMD

In this section, we describe the proposed architecture for privacy-enhanced management
of UHMD and show how it fulfills the goal of protecting the personal data and enhancing
the privacy of patients.

3.1. Management Architecture

An overview of the proposed architecture for a UHMS is presented in Figure 1. The em-
phasis of the description is on the part of personal agents. The biomedical data that are
produced by the patients’ wearable sensors are wirelessly collected through a local wire-
less network in the patient’s body into a personal mobile device, such as a smart phone.
Afterwards, the measured biomedical data are transmitted via multiple complementary
wireless networks (GPRS, 3G, Wi-Fi), through the Internet, towards the patient’s per-
sonal agent. The personal agents that are used for this task are the Polis agents and have
been suitably modified for this purpose. The features which have been added to the Polis
agents so as to be used in a UHMS are:

1. Ability to collect dynamic personal data, such as the biomedical data of the patients’
wearable sensors.

2. Ability to control the values of the biomedical data for the detection of some indica-
tive cases of emergency.
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Fig. 1. The proposed management architecture for a UHMS.

A snapshot of a patients’ personal agent is shown in Figure 2. On the other hand, the
patients’ personal agents are self-organized into an appropriate virtual network topology
that can provide easy organization and identification of the agents. This network topology
can be used as a tool to conduct privacy-preserving distributed computations.

Our architecture can support an intelligent health component which can make a first
check of the health data in real time. We provide an overview of the functionality of such
a component; a real implementation of such a tool is outside of the scope of this work.
The health component of the personal agent checks automatically the incoming vital signs
with the purpose to address for further thorough check in HMC if there are indications
of an emergency (see Figure 3). An example of rules/decisions that a health component
can apply in order to decide about an emergency can be found in [7]. If necessary, the
HMC can be consulted by the personal doctor of the patient. The personal doctors are
shown as “Doctors” in Figure 1. Depending on the situation, the HMC can coordinate
the immediate medical service at the closest or most appropriate local medical facility
using the best available transportation service (e.g.: ambulance). Finally, an additional
responsibility of the HMC is to inform the family of the patient about his condition so
that they could rush to provide their help.

3.2. Benefits of the Architecture

The idea of a decentralized architecture for storage and control of the patients’ medical
data into their personal agents, as it has already been mentioned provides the advantage
of enhanced control on the user’s personal data. Moreover, this decentralized approach
can also contribute to improved data security, since invaders find large collections of per-
sonal data much more inviting than an individual’s personal data [19]. The decentralized
approach grants to the patient the right to control the disclosure of his health data and mit-
igates its feeling of being under permanent surveillance. In addition to enhancing privacy,
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Fig. 2. A snapshot of UHMS personal agent. On the top, network configuration parameters of the
agent can be seen. In the middle, the latest health data received by the agent are shown. Finally, at
the bottom, logging information about the operation of the agents is presented.

Generate  
Health Data

Se
ns

or
s

P
er

so
na

l A
ge

nt
H

M
C

Store Health 
Data

Aberration
Detected

No Problem

Analyze 
Situation

No

Yes

Emergency 
Detected

Immediate 
Medical Service

No Emergency

Yes

No

Fig. 3. A system flowchart of the biomedical information.

the decongestion of HMC from the huge amount of data, including raw sensors’ data, that
would be accepted if the patients sent their data directly to it, is achieved. Even in the case
that the data would be collected at the HMC, these would be much less in volume than
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those that would actually be produced by the sensors, thus the analysis would not be as
effective as the one that would be made by the agents themselves by having the complete
data. With the proposed health data management approach of this work, the HMC has
now to handle only those cases which may be at a certain risk.

Of course, the decentralized architecture holds challenges and issues too. The manag-
ing of a personal agent is by definition a critical task, prone to errors and omissions by
the user. However, it is possible to mitigate these risks by standarizing or even automating
the corresponding procedures of the agent. Furthermore, there are issues about the agent’s
security; a production-ready agent should satisfy high security levels. We believe that this
is a viable task, since the agent has a precise, well-defined functionality and can be op-
erated behind firewalls on a user-controlled computing platform. Also, another issue is
what will happen if temporarily the patient’s agent has no network connectivity (offline).
In this case, the patient’s data which are collected by his mobile device could be kept there
and later be transmitted to the personal agent as soon as the failure is restored. Moreover,
during a failure of the personal agent, health data could also be transmitted directly to
the HMC for storage and control. Measures such as the above can ensure fault-tolerance
against possible agent failures.

It is noteworthy that storing health data at the patients’ side does not exclude the pos-
sibility to access the data from a central database as long as the database is entitled to do
so. As shown in [22], the personal agents of Polis can be interconnected with mainstream
database servers to provide transparent access to the personal data fields. The basic idea
is that personal data fields in the central database do not contain the actual data; instead, a
ticket represented by an appropriate data object is used to retrieve the data value on the fly.
With this approach, which has been tested with an Oracle database server, a query sub-
mitted to the database may transparently retrieve – on the fly – personal data items from
the associated personal software agents and present the personal data within the record-
set (the answer of the database) of the query. An example query and the corresponding
recordset are given in Figure 4. The data fields TimeStamp, BodyTemperature and Heart-
Pulses are personal data fields and their content are – transparently for the database user
– dynamically retrieved from the corresponding personal agents.

SQL> S e l e c t I D P a t i e n t , TimeStamp , BodyTemperature ,
H e a r t P u l s e s From C u r r e n t B i o m e d i c a l D a t a
Where I D P a t i e n t Between 142120 And 142180;

Fig. 4. SQL access to remote health data.
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The choice to store the patient’s data in an agent enables the possibility to utilize
these data for the common wealth. The Nearest Doctor Problem (NDP) [40] is mentioned
as a typical example. The NDP is a privacy-preserving protocol, which uses a network of
the doctors’ agents aiming to find the nearest doctor in case of an emergency, by using
dynamic data such as their location. In our case, the data of the patients could be used
for a similar distributed computation. Such an example is the monitoring progress/spread
of a pandemic in a region. Data such as the location and the body temperature of the
patients would be required for this example. Another example is a medical statistical
research on the biomedical data of the wearable sensors as well as on the medical records
of patients. In the following section we use our distributed data management approach for
a distributed statistical analysis application.

4. Privacy-Preserving Statistical Analysis on UHMD

In this section, we present a method for statistical analysis of ubiquitous health monitoring
data (UHMD). For the statistical analysis we propose a privacy-preserving distributed
computation that is collaboratively executed by the participating personal software agents.
We first define the kind of privacy that is achieved and then proceed with the description
of the distributed computation.

4.1. Privacy-Preserving Computation

There are two distinct problems that arise in the setting of privacy-preserving statistics/-
data mining [41]:

(a) The first is to decide which functions can be safely computed, where safety means that
the privacy of individuals is preserved if the result of the computation is disclosed.
We will assume that the outcomes of the statistics computations do not violate the
privacy of the participating patients and will not further consider this problem in this
work.

(b) The second is how, meaning with which algorithms and protocols, to compute the
results while minimizing the damage to privacy. For example, it is always possible
to pool all of the data in one place and run the computation algorithm on the pooled
data. However, this is exactly what we don’t want to do (hospitals are not allowed
to hand their raw data out, security agencies cannot afford the risk, and governments
risk citizen outcry if they do). The focus of our work is on this problem.

Thus, the question we will address is how to achieve privacy of type (b), that is, how
to compute the statistic results without pooling the data, and in a way that reveals nothing
but the final results of the distributed computation.

4.2. Architecture of the Distributed Computation

Our solution is build on top of the privacy-enhanced UHMS presented earlier in this work.
An overview of the architecture of the statistical analysis system including the extra com-
ponents that are required for a distributed statistical analysis computation, i.e., the Net-
work Community of Personal Agents and the Statistical Analysis Service (SAS), is shown
in Figure 5.



534 George Drosatos and Pavlos S. Efraimidis

The personal agents are organized into a virtual topology, which may be a simple ring
topology or a more involved topology for time-critical computations. On the other hand,
the SAS is a server that initiates the distributed computation on the users’ medical data
and collects the aggregate results. Each researcher who wishes to carry out a statistical
research and is entitled to do so, can submit his task to the SAS.

Network Community of 
Personal Agents

Agent1

Agent2

User1

User3User2

Statistical Analysis 
Service

Agent3

AgentN
UserN

Network 
Topology

Fig. 5. The architecture for performing privacy-preserving statistical analysis.

4.3. The Main Steps of the Distributed Computation

The main steps of the distributed computation that we propose for the statistics calculation
are:

– Initially, the researcher submits the request to conduct a specific statistical analysis to
the SAS.

– The SAS accepts the request after verifying the credentials of the researcher.
– The SAS picks one of the personal agents to serve as the root-node for the particular

computation and submits the request to it.
– The root-node coordinates a distributed computation that calculates the specified sta-

tistical function.
– At the end of the distributed computation, the SAS and the researcher will only learn

aggregate results of the computation without any additional information of the per-
sonal data of individual participants.

4.4. The Secure Distributed Protocol

In this section, we present the main idea of the cryptographic protocol that is used in the
statistical computations. The protocol is secure in the Honest-But-Curious (HBC) model
(see Section 4.7), where the users’ agents participating in the computation follow the
protocol steps but may also try to extract additional information. During the calculation
the actual users’ personal data are not disclosed in any stage of the process but only the
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aggregate results are revealed at the end. An instance of a statistical computation problem
consists of:

– N patients P1, P2, . . . , PN and their personal data.
– N personal software agents: The agents of all patients that will participate in the

distributed privacy-preserving computation.
• Input: The type of the statistical function and its parameters. In addition, selec-

tivity constraints for the data set may also be specified. Note that more than one
statistical functions on the same dataset can be calculated with a single computa-
tion.
• Output: The necessary aggregate values (e.g. wx, ux, zxy and n, which are de-

fined later) that are needed to calculate the given statistical function.

Consider the following statistical computation instance: Computing the average of the
female patients’ age in a city. First, we assume that the results of the specific query are
not considered a threat against the users’ privacy, that is, privacy type (a) of Section 4.1
is preserved. Then, given the computation instance, the SAS chooses a node from the
network of the users’ agents as the root-node for the particular computation. The SAS
sends the type of the requested computation and its parameters to the root-node. The
parameters of the computation, i.e., the female gender and the city name, are used to filter
the data set. Each personal agent, decides privately to provide data or not to the statistical
research.

A simple topology for the personal agents is a virtual ring topology that contains all
agents as nodes (Figure 6.b). For time-critical computations, more complex topologies
like a virtual tree can be used (Figure 6.a). The tree topology for example has been used
in [40]. At the end of the execution, the root-node collects the results of the calculation as
an encrypted message and sends it to the SAS. The message is encrypted with the public
key of the SAS, which is assumed to be known to all nodes. In this way, the protocol
ensures k-anonymity (see Definition 3), where k = N and N is the number of all the
nodes in the network.

User Agent 

Root Node

Statistical Analysis Service (SAS)

Broadcast Message
Encrypted Data

N: Users’ Agents 

(b) Ring Topology(a) Tree Topology

Fig. 6. Possible network topologies.
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Cryptographic Tools. The Paillier cryptosystem [42] is a probabilistic asymmetric cryp-
tographic algorithm for public key cryptography. The security of Paillier is implied by the
Decisional Composite Residuosity Assumption (DCRA). In our cryptographic protocol,
we use the additive homomorphic encryption property of the Paillier cryptosystem for
calculating aggregate data in a privacy-preserving way.

Definition 1 (Homomorphic Encryption). Homomorphic encryption [43, 44] is a form
of encryption where one can perform a specific algebraic operation on the plaintext by
performing a (possibly different) algebraic operation on the ciphertext. Particularly, an
encryption algorithm E() is homomorphic if given E(x1) and E(x2), one can obtain
E(x1 ◦ x2) without decrypting x1, x2, for some operation ◦.

The additive homomorphic encryption property of the Paillier cryptosystem means
that multiplication of encrypted values corresponds to addition of decrypted ones, that is,

E(x1) · E(x2) = (gx1 · rnp

1 ) · (gx2 · rnp

2 )

= g[x1+x2 mod np] · (r1r2)np mod np2

= E([x1 + x2 mod np]) ,

where

– x1 and x2 are two plain messages such that x1, x2 ∈ Znp
,

– (np, g) is the Paillier public key,
– r1 and r2 are two random numbers such that r1, r2 ∈ Z∗

np
, and

– E(m) = gmrnp mod np2 is the encryption of message m.

The Paillier cryptosystem is a very popular additively homomorphic cryptosystem. It
should be noted, however, that within our proposed distributed computation any other
cryptosystem that supports the additive homomorphic property could also be used in
place of the Paillier cryptosystem. For example the Benaloh cryptosystem [45] could
be used within our solution. Moreover, it would also be possible to use the ElGamal
cryptosystem [46], that supports multiplicative homomorphic property, provided that the
computations are adapted accordingly. For example in this case one would have to trans-
form the integer x to the group element zx, for a fixed generator z, before encrypting
with ElGamal. Thus, the transformation of multiplicative homomorphic property becomes
E(zx) · E(zy) = E(zx · zy) = E(zx+y).

4.5. The Computations

In this section, we use our approach to calculate representative statistical functions with a
distributed computation. Wherever it is necessary, the expression of the statistical function
is brought to a form that is appropriate for the distributed computation.

Arithmetic Mean. The arithmetic mean of a variableX (with sample space {x1, . . . , xn})
is given by the following equation:

x̄ =
1

n

n∑
i=1

xi
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We use the additive homomorphic property of Paillier encryption to calculate the value
of the terms ux =

∑n
i=1 xi and n. The calculation is privacy-preserving; no single xi

is disclosed. Once the SAS learns the values of the terms ux and n, it can compute the
arithmetic mean. More precisely, using the homomorphic property of Paillier, the two
terms ux and n can be transformed into the following form:

Epk(ux) =
n∏

i=1

Epk(xi) and Epk(n) =
n∏

i=1

Epk(1) ,

where the Epk indicates that the message is encrypted with the current public key of SAS
for the specific statistical analysis. Each agent i that participates in the statistical analysis,
prepares its own encryptions Epk(xi) and Epk(1). These encrypted messages are used to
calculate the above two global products. Agents that do not participate in the statistical
computation (because for example they do not satisfy some selection criterion) multiply
each of the above two products with an independent encryption of zero Epk(0).

Frequency Distribution. The frequency distribution is a tabulation of the values that one
or more variables take in a sample. Each entry in the table contains the frequency or count
of the occurrences of values within a particular group or interval; in this way, the table
summarizes the distribution of values in the sample. The graphical representation of the
frequency distribution is the well known histogram. Figure 7 shows how the frequency
distribution would become by using ciphertext as counters in each range, where each
ciphertext is given by the following equation:

Epk(nv) =
n∏

i=1

Epk(m), where m =

{
1, x ∈ [xv−1, xv)
0, x 6∈ [xv−1, xv)

q q qx1 x2 x3 xv−2 xv−1 xv

Epk(n1) Epk(n2) q q q Epk(nv−2) Epk(nv−1)

Fig. 7. Representation of a frequency distribution.

Linear Correlation Coefficient. The linear correlation coefficient corr(X,Y ) of two
random variables X and Y is a measure of the strength and the direction of a linear
relationship between two variables and is defined as:

corr(X,Y ) =

n
n∑

i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi√√√√n
n∑

i=1

x2i −

(
n∑

i=1

xi

)2
√√√√n

n∑
i=1

y2i −

(
n∑

i=1

yi

)2
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The unknown terms that are required to calculate the linear correlation coefficient with
the help of the homomorphic property of Paillier are wx =

∑n
i=1 x

2
i , ux =

∑n
i=1 xi,

wy =
∑n

i=1 y
2
i , uy =

∑n
i=1 yi, zxy =

∑n
i=1 xiyi and n, by taking the following form:

Epk(wx) =
n∏

i=1

Epk(x2i ), Epk(ux) =
n∏

i=1

Epk(xi),

Epk(wy) =
n∏

i=1

Epk(y2i ), Epk(uy) =
n∏

i=1

Epk(yi),

Epk(zxy) =
n∏

i=1

Epk(xiyi) and Epk(n) =
n∏

i=1

Epk(1)

Variance. The variance var(X) of a variable X is used as a measure of how far a set of
numbers are spread out from each other. The unknown terms that are required to calculate
the equation of variance with the help of the homomorphic property of Paillier are wx, ux
and n. These terms can be calculated as shown earlier in the computations of the arthmetic
mean and the linear correlation coefficient.

Covariance. The covariance cov(X,Y ) of two random variables X and Y is a measure
of the strength of the correlation between the two variables. The unknown terms that
are required to calculate the equation of covariance with the help of the homomorphic
property of Paillier are ux, uy , zxy and n.

Linear Regression. The linear regression of a dependent variable Y of the regressors X
is given by the equation y = a + bx, where a and b are parameters. The unknown terms
that are required to calculate the parameters of line y with the help of the homomorphic
property of Paillier are wx, ux, uy , zxy and n.

From the analysis of the above statistical functions, we conclude that apart from the
frequency distribution, all other function can be simultaneously calculated by computing
once the required aggregate terms. Moreover, it is clear that the proposed solution can
also be used to calculate other statistical functions, such as the polynomial regression and
so on. We discuss such issues in the next section.

4.6. Computations with Homomorphic Cryptosystems

In our algorithm, we exploit the additive homomorphic property of Paillier to calculate ad-
ditive aggregations which are then used to compute the values of statistical functions. We
note that the same method can be used for multiplication-based aggregation if a cryptosys-
tem supporting the multiplicative homomorphic property is used in place of Paillier. For
example, the ElGamal and the RSA cryptosystems support multiplicative homomorphic
encryption. Moreover, there are recent results on “somewhat” homomorphic cryptosys-
tems, i.e., cryptosystems which support a limited number of homomorphic operations
including both additive and multiplicative operations. More importantly, during the last
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years fully homomorphic cryptosystems supporting any number of additions and multi-
plications have been published, starting with the seminal work of Gentry [44]. Until now,
fully homomorphic cryptosystems are not efficient enough to be used in practical appli-
cations like ours, though one could probably use somewhat homomorphic cryptosystems
for some appropriate functions. A discussion of the efficiency and the practical relevance
of current fully homomorphic and somewhat homomorphic cryptosystems [47].

4.7. The Protocol’s Security

In this section, we show that the proposed protocol of a distributed statistical analysis in
a UHMS does not violate the privacy of participants. The security holds for the model of
Honest-But-Curious (HBC) users.

Definition 2 (Honest-But-Curious). An honest-but-curious party (adversary) [48] fol-
lows the prescribed computation protocol properly, but may keep intermediate computa-
tion results, e.g. messages exchanged, and try to deduce additional information from them
other than the protocol result.

In the cryptographic protocol described above, the information exchanged by agents
is encrypted with the Paillier cryptosystem [42], which is known to offer Semantic Se-
curity [49], that is, it is infeasible for a computationally bounded adversary to derive
significant information about a message (plaintext) when given only its ciphertext and the
corresponding public encryption key. Consequently, assuming honest-but-curious parties
and that users’ agents do not collude with the SAS party outside of the protocol, our ap-
proach is semantically secure. In Section 4.8, we show that the case where some user
agents collude with the SAS outside of the protocol can be handled with a threshold de-
cryption model.

From the above, we conclude that the computation with the homomorphic encryp-
tions does not leak personal information of participating individuals (privacy type (b) in
Section 4.1). As noted earlier, the (decrypted) outcomes of the statistic computation are
also assumed to preserve privacy of type (a). We can now discuss the privacy guarantee
of the whole approach. A common criterion for privacy protection is k-anonymity, which
requires that data of the outcome cannot be associated with any particular patient.

Definition 3 (k-anonymity). A simple definition of k-anonymity [50] in the context of
this work is that no less than k individual users can be associated with a particular per-
sonal data value.

The proposed solution offers k-anonymity in the sense that the result computed at the
end of the protocol cannot be attributed to any of the N participated agents, i.e., k = N
even if the list of participating users is known (assuming no background information on
specific users is available). In summary, the key security features of our protocol are:

– Each agent that receives a message from the previous node cannot obtain information
about the contents of the message, because the ciphertexts are encrypted with the
Paillier cryptosystem.

– Each node alters the ciphertexts of the computation. Even the nodes that do not partic-
ipate in the statistical function multiply the ciphertexts with an encryption of number
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“0”, which is the neutral element of the additive homomorphic property of Paillier.
Thus, the ciphertext is modified at every node, even if the corresponding node does
not give any input to the computation.

– At the end of the protocol, only the variables that are needed for a particular statistical
function are revealed. As a result, no individual can be associated with the value that
he had used in the computation. Consequently, the proposed protocol preserves k-
anonymity for k = N , where N is the number of all agents in the network.

Another criterion for evaluating privacy protection is the concept of differential pri-
vacy. Loosely speaking, the aim of differential privacy is to ensure that the ability of an
adversary to inflict harm (or good, for that matter) – of any sort, to any set of people –
should be essentially the same, independent of whether any individual opts in to, opts out
of, the dataset [51, 52]. The formal definition of differential privacy follows.

Definition 4 (ε-Differential privacy [52]). A randomized function K gives ε-differential
privacy if for all data sets D1 and D2 differing on at most one element, and all S ⊆
Range(K), the following holds:

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S]

The probability is taken is over the coin tosses of K.

If privacy of type (a) (Section 4.1) is preserved, for example, no queries or sequences
of queries addressing a very small number of individuals are permitted etc., then it is
plausible to assume that our approach achieves a satisfactory level of differential privacy.
Note that the outcomes of the statistical computations are sums or aggregate results com-
puted from a large number of sensor measurements and demographic values of a large
population. One may also consider of adding Laplace noise [53] to the statistical results
in order to further enhance the differential privacy criterion, even though there is some
recent criticism of such an approach [54].

4.8. Security Discussion

In this section, we identify some representative threats against our application and discuss
how they are or can be addressed within our approach. The threats concern either the
correctness of the aggregated results or the privacy of the involved participants.

– Incorrect sensor measurements. This case refers to the case where one or more sen-
sors generate erroneous data of values large enough to significantly influence the
aggregate result. Such incidents could disrupt a statistical analysis and would be dif-
ficult to be noticed in the statistical results. However, such incorrect measurements
could be detected by the intelligent health component or some dedicated filter of
the patient’s agent and excluded from the current statistical analysis. This solution
is acceptable in the HBC model. Moreover, even for the case where such incorrect
measurements could be maliciously submitted in order to skew the statistical result,
we could use more advance techniques of the area of electronic voting [55]. In this
case, each node would have to run a zero-knowledge proof with its predecessor/s with
purpose to verify that the measurements are within an acceptable range.
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– Dedicated queries with purpose to reveal personal biomedical data of a particular
patient. One query or a set of queries may be chosen and submitted to target specific
patients, by using background information on the set of participating individuals.
Such dedicated queries may cause leakage of personal data of the selected patients. As
noted earlier, such an attack is a threat against privacy of type (a) and the participants
have to be protected with respect to such attacks. The problem is well known in the
area of statistical databases [56] and it is not something new. A possible solution
could be to use a second authority which will check if there are enough patients who
cover the query’s criteria before the SAS performs the specific statistical analysis.

– Collusion among some patients and the SAS. In this case, the SAS will try to collab-
orate with at least two patients (in the simple ring topology) with purpose to reveal
the private values of a patient. These two patients have to be the predecessor and the
successor of the particular patient. More specifically, the colluding predecessor cre-
ates neutral ciphertexts and forwards them to the intermediate node. This node would
then encrypt its private values and forward the result to its colluding successor (ac-
cording to the topology). The successor would then immediately return the values to
the SAS which now gets to decrypt these private values. Such malicious behaviors
can be effectively handled by deploying threshold decryption model [57] for the de-
cryption of the encrypted values. Threshold decryption model requires a number of
designated parties exceeding an appropriate threshold to cooperate for the decryption
to be possible.

4.9. Experimental Results

To evaluate our solution, we developed a prototype that carries out distributed statistical
analysis on medical data. The application is implemented in Java and for the crypto-
graphic primitives the Bouncycastle [58] library is used. The personal agents of the Polis
platform [22] are used as the personal data management agents of the patients. For this
approach, the Polis agents were suitably modified so as to be able to manage both health
records and health data that would actually be collected through a secure communica-
tion channel by the patients’ wearable sensors. The community of the personal agents is
organized as a Peer-to-Peer network. At this stage of development of the prototype, the
backbone of the topology is a virtual ring topology. The ring offers a simple and reliable
solution for the interconnection of the agents. For time-critical calculations of statistics a
more involved topology like a virtual tree should be used.

The personal agents use production-ready cryptographic libraries and employ 1024
bits RSA X.509 certificates. The communication between agents is performed over se-
cure sockets (SSL/TLS) with both client and server authentication. Below we describe an
experiment of a distributed statistical analysis with 6 agents and the SAS. The requested
statistic is:

• The arithmetic mean of the current body temperature of patients who are aged be-
tween 55 and 65 years old and their gender is female.

For the needs of the experiment, each agent generates random values for the age, the
gender, and the current body temperature. We assume that the selectivity of the query
criteria is high enough to preserve privacy of type (a). Then, in brief, the statistical com-
putation works as follows. Initially, the SAS randomly chooses a node from the agents’
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network, in this case agent ‘Patient2’, as the root-node, and forwards the description of
the statistical computation to it. The values of each agent which are related to the com-
putation are shown in Table 1. The last two columns show the aggregate values that are
encrypted after the corresponding agent applies its values to the results. Since the homo-
morphic property of Paillier applies to integers, decimal values like the body temperature
have also to be represented with integers. In our example, the temperature is rounded to a
number with at most two decimal digits and then multiplied by 100 to become an integer.

Table 1. Example of computation, where the agents in gray rows did not take part in computation.

Agent Curr. Temp. Age Gender Epk(ux) =

n∏
i=1

Epk(xi) Epk(n) =

n∏
i=1

Epk(1)

Patient2 36.68 oC 51 Female E(0) E(0)
Patient3 36.50 oC 56 Female E(3650) E(1)
Patient4 37.70 oC 60 Female E(7420) E(2)
Patient5 38.10 oC 65 Female E(11230) E(3)
Patient6 37.12 oC 59 Male E(11230) E(3)
Patient1 36.20 oC 63 Female E(14850) E(4)

At the end of the computation, the agent ‘Patient2’ as the root-node collects the results
and sends them back to the SAS. Finally, the SAS decrypts the results and finds that the
average of the question which was submitted is 37.125 oC. A snapshot of the application
during the execution of the experiment is shown in Figure 8.

We also performed a set of large-scale experiments with up to 300 agents. More pre-
cisely, we evaluated the efficiency of our solution with a series of experiments on a grad-
ually increasing number of up to 300 agents. For this experiment, a network of 30 com-
puter workstations with Intel Core 2 Quad Q8300 CPU’s at 2.5 GHz, 2 GB RAM and a
100 Mbps network, were used. The workstations were running a 32-bit operating system
and the agents were executed in 32-bit Java virtual machines. Each computer was shared
by at most 10 agents, to ensure an even workload distribution and avoid single overloaded
workstations; an overloaded workstation would become a bottleneck that could signifi-
cantly delay the execution of the whole protocol.

The running times of our experiments are shown in Figure 9. In this figure, we present
the execution times for the computation of the arithmetic mean, the variance and the fre-
quency distribution (for 10 subintervals) functions. As expected, the execution times de-
pend practically linearly on the number of agents which take part in the computation and
on the number of encryptions and multiplications in every statistical function. The overall
running time is more than satisfactory for batch execution of statistical computations. In
case of large numbers of statistical computations, the rate of computations can be sub-
stantially improved by using a pipeline of independent computations. For cases where the
run-time of the computations is important, the distributed computation can be executed
on a virtual tree or some other – low depth – topology, instead of the ring topology. In this
case one would expect, and we actually have such preliminary measurements albeit within
a different context [40], that the total running time will depend only logarithmically on
the total number of nodes.
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Fig. 8. A snapshot of the agent ‘Patient3’.

Finally, the execution times of the computations could be significantly reduced by
simply using 64-bit Java virtual machines for running the experiments. This change would
greatly improve the execution times especially of the heavy encryption operations which
involve BigInteger3 variables. In a comparable, independent, experiment we noticed an
almost four-times improvement of the execution times when 64-bit Java was used in place
of 32-bit Java. The use of the 64-bit virtual machine seems to effectively exploit the bigger
registers of the AMD64 architecture for the cryptographic operations.

5. Conclusions

The tendency of the society towards increasing numbers of elderly people and gener-
ally people who need continuous health monitoring makes the need of Ubiquitous Health
Monitoring Systems (UHMS) imperative. At the same time the concerns of the pub-
lic about privacy are also rising. In this work, we presented a software architecture for
privacy-enhanced UHMS and proposed the use of the ubiquitous health data that are ob-
tained by the wearable sensors in a UHMS for caring out statistical researches. The pro-
posed architecture allows the patients to have enhanced control over their personal data, so
as not to have the feeling of being continuously under surveillance. The enhanced control
on their personal data was achieved by using personal software agents for the manage-
ment of the patients’ personal data. Putting personal agents in charge of personal health
data can open the way for the definition and implementation of new services which utilize

3 BigInteger is an immutable arbitrary-precision integer.
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Fig. 9. Computation times of arithmetic mean, variance and frequency distribution (for 10 subinter-
vals) statistical functions with respect to the number of agents.

personal data to contribute to public well being, while at the same ensuring the privacy of
the involved individuals.

In this direction, we designed an algorithm for the distributed computation and, based
on this algorithm and cryptographic primitives, we presented a solution for privacy-pre-
serving statistical analysis on ubiquitous health data. The protection of privacy is achieved
by using cryptographic techniques and performing a distributed computation within a net-
work of patients’ personal agents. We described how representative statistical functions
can be executed distributedly by using the proposed cryptographic protocol. Finally, we
developed a prototype implementation and performed an experimental evaluation that
confirmed the viability and the efficiency of our approach.

Overall, our work demonstrates the feasibility of decentralized, scalable, privacy-
enhanced management of Ubiquitous Health Monitoring Data (UHMD), and, most im-
portantly, presents how privacy-preserving statistical analysis can be efficiently performed
on such an architecture.
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57. Ivan Damgård and Mats Jurik. A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In Proceedings of the 4th International Workshop on
Practice and Theory in Public Key Cryptography: Public Key Cryptography (PKC ’01), pages
119–136, London, UK, 2001. Springer-Verlag.

58. Bouncycastle. Legion of the bouncy castle, January 2011. http://www.bouncycastle.
org/.

George Drosatos is a Post-Doctoral Researcher at the Athena Research and Innovation
Center, branch of Xanthi (Greece). He received his diploma thesis in Electrical and Com-
puter Engineering from Democritus University of Thrace (Greece) in 2006. In addition,
he acquired a Master’s degree (March 2010, advised by Prof. Alexandros Karakos) and
a PhD degree (December 2013, advised by Assistant Prof. Pavlos S. Efraimidis) both
from the Dept. of Electrical and Computer Engineering of the Democritus University of
Thrace. His research interests are in the field of privacy and in particular privacy in ubiq-
uitous computing.



548 George Drosatos and Pavlos S. Efraimidis

Pavlos S. Efraimidis is an Assistant Professor at the Dept. of Electrical and Computer
Engineering of the Democritus University of Thrace (Greece). He graduated from the
Dept. of Computer Engineering and Informatics of the University of Patras (Greece) in
1996 and obtained a PhD in Informatics in 2000 from the University of Patras under the
supervision of Paul Spirakis. His research interests are in the fields of algorithms and
privacy. He is a member of ACM, IEEE and EATCS.

Received: January 20, 2013; Accepted: March 20, 2014.




