
Improving robustness against common corruptions by
covariate shift adaptation
ICML 2020 Workshop on Uncertainty & Robustness in Deep Learning

Steffen Schneider1 2∗, Evgenia Rusak1 2∗, Luisa Eck3,
Oliver Bringmann1†, Wieland Brendel1†, Matthias Bethge1†

July 17, 2020
1University of Tübingen 2IMPRS-IS 3LMU Munich

Web: domainadaptation.org/batchnorm
Contact: steffen@bethgelab.org

July 17, 2020 Schneider & Rusak et al. — Improving robustness against common corruptions by covariate shift adaptation – 1 –



Benchmarking corruption robustness
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Benchmarking corruption robustness: ImageNet-C (Hendrycks et al., ‘19)
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Adaptation of Batch Norm Statistics
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Adaptation of Batch Norm Statistics
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Adaptation of Batch Norm Statistics
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Motivation: Rethinking robustness evaluation

Issue 1:

• Robustness is benchmarked in an ad hoc setting, assuming access to one sample.

• In many practical problems (medical imaging, quality control, ...), it is a reasonable
assumption that distributions only slowly drift — or abruptly change, but only from
time to time.

Issue 2:

• Many computer vision models are trained using batch normalization.
• Problem with BN in o.o.d. scenarios: Training stats are not optimal at test time.

Hypothesis: Current robustness results underestimate model performance.
We propose a simple baseline for IN-C evaluation beyond the ad hoc settings.
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Adaptation boosts robustness of a vanilla trained ResNet-50 model.
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Adaptation yields new state of the art on ImageNet-C for robust models.
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Adaptation yields new state of the art on ImageNet-C for robust models.
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Adaptation yields new state of the art on ImageNet-C for robust models.
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Adaptation [•] consistently improves corruption robustness over Baseline [◦]
across ImageNet trained models.
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Severity of covariate shift correlates with performance degradation.
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Large scale pre-training alleviates the need for adaptation.

ImageNet-C mCE (↘)
ResNeXt101 BN, non-adapt BN, adapted

32x8d, IN 66.6 56.7 (−9.9)
32x8d, IG-3.5B 51.7 51.6 (−0.1)
32x48d, IG-3.5B 45.7 47.3 (+1.6)
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GroupNorm, Fixup better than BN non-adapt, worse than adaptation.

ImageNet-C mCE (↘)
Model Fixup GroupNorm BN, non-adapt BN, adapted

ResNet-50 72.0 72.4 76.7 62.2
ResNet-101 68.2 67.6 69.0 59.1
ResNet-152 67.6 65.4 69.3 58.0
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Control: Same performance on iid data
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Limitation: No gains on more difficult domain shifts
(ObjectNet; Barbu et al. ‘19)
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Conclusion

• We empirically showed that BN adaptation improves all commonly used models on
IN-C, often by 10–15% points.

• Focussing on the ad-hoc scenario (n = 1) underestimates model performance.
• Instead, we suggest to report ad-hoc, small sample size (n = 8) and full adaptation
scores.

• When evaluating robustness on systematic, well-defined corruptions like in
ImageNet-C, batch normalization is a strong and very simple baseline. We regard
this as the very minimal technique to try in future work. It can be quickly
implemented with minimal changes to the source code.

Read our paper at domainadaptation.org/batchnorm
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