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ABSTRACT

Whilst voxel carving approaches exist that allow non-invasive
3D human reconstruction, their performance is heavily de-
pendent on the number of cameras used and the placement
of these cameras around the subject. We present a tech-
nique to quantify the fall-off in accuracy of spatially carved
volumetric representations of humans based on real world
constraints. We describe an example of such a quantita-
tive evaluation using a synthetic dataset of typical sports
motion in a tennis court scenario, created using computer
graphics techniques and motion capture data. Experiments
are performed using a baseline voxel carving technique that
includes player tracking, background subtraction and player
voxel carving. This type of quantitative evaluation could be
used by amateur sporting clubs without a sophisticated cap-
ture infrastructure to understand how best to instrument a
camera network in order to obtain a good trade-off between
reconstruction accuracy and installation cost.

Categories and Subject Descriptors

1.4.5 [Computing Methodologies]: Image Processing and
Computer Vision— Reconstruction

General Terms

Algorithms, Measurement, Experimentation
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1. INTRODUCTION

In order for coaches to both technically and tactically im-
prove a player’s performance they must be able to ascertain
the deficiencies in an athlete’s abilities and effectively com-
municate to the player how to correct these. In our on-going

Area chair: Qi Tian

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

MM’ 11, November 28—-December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

work, we aim to maximise the impact of coaching feedback
by developing tools for both performance analysis and visu-
alisation of player performance. In tennis, for example, 3D
visualisation could be used to provide detailed feedback on
an athlete’s biomechanical movement during specific actions
crucial to overall performance. Such a visualisation would be
useful for coaches for identifying faults in a player’s stroke
mechanics during serves, drop shots, etc as well a useful
means of conveying this information back to the athlete.

Clearly, 3D human reconstruction is a key component in
achieving this, as it forms a core element of both perfor-
mance analysis and visualisation. For example, Zhao et.al.
[10] fit a human skeletal poses to a temporal series of 3D vol-
umetric representations, resulting in the acquisition of the
movement of a human’s limbs and body over time. This
technique could be employed as the basis for the evaluation
of sporting performance, for example determining how pa-
rameters, such as fatigue, affect an athlete technique over
time. However, the accuracy of such skeletal fitting tech-
niques are intrinsically linked to the precision of the 3D hu-
man representations. Similarly, an accurate reconstruction
of the player at any point in time would allow the coach
flexibility when clarifying a tactical or technical issue by al-
lowing the game to be viewed from any angle; or enabling
highly beneficial tactical information to be obtained by an
athlete from reliving a match from their own viewpoint, a
spectator’s viewpoint, and from their opponent’s viewpoint.
The usefulness of this depends on the accuracy of the visu-
alisation.

In an ideal scenario, the 3D human volumetric models
would be acquired from voxel carving techniques using a
camera network consisting of numerous high quality cam-
eras, with the cameras in the network positioned on the
surface of a virtual sphere around the athlete. Real world
constraints, however, do not normally allow for this. In a
low cost amateur set-up, the quality and number of cameras
available is limited. Furthermore, the physical constraints
of retro-fitting a camera network to an existing environment
will often mean the non-linear placement of cameras that
do not provide full 360 degree encirclement. For such a sce-
nario, deciding the optimum camera placement positions can
lead to significant gains in the accuracy of generated volu-
metric models. To the best of our knowledge, however, no
tools exist to help inform how best to instrument the camera
network in order to ensure maximum quality given a limited
budget (number of cameras) and real world practical mount-
ing constraints.

In this work, we describe a technique that, starting from



an idealized capture scenario, can quantify the fall off in ac-
curacy of a 3D reconstruction as the number of cameras is
reduced. Using this as a tool, the number, placement and
cost of the camera network could be optimised, allowing the
highest quality 3D volumetric models to be acquired given
a defined budget and the physical constraints of the cap-
ture environment (note that we do not claim to address this
complex optimization problem here, it is targeted for future
work). The paper is organised as follows: Section 2 provides
a brief overview on previous work conducted in the area 3D
reconstruction techniques. Section 3 gives an overview of
the proposed approach. Section 5 provides quantitative and
subjective evaluation of the approach and conclusions and
future work are outlined in section 6.

2. RELATED WORK

The 3D reconstruction techniques described in the liter-
ature range from emerging techniques based on wearable
cheap sensors [8] to well-known and broadly used light scan-
ning and infra-red optical motion capture systems. Although
systems such as Vicon [2] are generally regarded as being the
gold standard in accurate motion reconstruction, they can
be impractical and cumbersome in some scenarios. Athletic
motion, in particular, is challenging because subjects often
move very quickly through large spatial volumes that may be
difficult to densely and safely populate with enough cameras
to ensure adequate coverage and resolution. The practicali-
ties of installing a large number of expensive cameras in such
spaces may also be impractical due to the inherent cost of
the hardware. Within the context of real world sporting
environments, where athletes tend not to be permitted to
be instrumented or wear restrictive motion capture suits, a
non-invasive technique that does not disturb or distract the
athlete is the most desirable solution.

Space carving [3, 5, 6, 7], or voxel (a 3D pixel) carving,
techniques can provide such a non-invasive solution and can
be implemented on a low-cost camera network allowing the
approach to be feasibly employed by both amateur and elite
level sports clubs. Space carving techniques create a 3D
representation of a subject from a temporally calibrated se-
quence of 2D images captured from a number of cameras
at multiple viewing angles. In each image, a silhouette of
the region of interest (i.e. the athlete) is identified and seg-
mented. A virtual cube is drawn around the volume a sub-
ject occupies in 3D space and this volume is subsequently
populated with voxels. Each voxel is analogous to a virtual
lump of clay that is carved by iterating through each of the
cameras and eliminating inconsistent voxels from this pre-
defined initial volume using the extracted silhouettes from
each image [6]. The resultant voxels occupy the space that
corresponds to the most probable 3D spatial location of the
subject. However, the accuracy of the resultant 3D repre-
sentation is heavily dependent on the number of cameras
used and their placement.

3. GENERATING A GROUND TRUTH

In this paper, we present a technique to quantify the fall-
off in accuracy of a spatially carved volumetric representa-
tion based on real world constraints. In this case study, these
constraints are derived from (i) a modest budget that will
support a limited number of our preferred cameras, and (ii)
based on the capture environment that imposes a physical

restriction on the placement of these cameras (for exam-
ple, cameras cannot be placed in areas where they will be
damaged, or located where no physical structures exist on
which they can be mounted). However, in order to quanti-
tatively calculate the expected error of a space carving from
a given camera set-up, a groundtruth 3D representation is
needed. The groundtruth represents the best possible space
carving that could be achieved in the environment, given a
near unlimited budget (i.e. alarge number of cameras). This
groundtruth data can be used to quantify the fall-off in accu-
racy resulting from the reduction in the number of cameras
from an ideal scenario to a scenario governed by real world
constraints. However, the generation of this dataset in a
real-world scenario is highly complicated as the groundtruth
volume of the region of interest is generally unknown to a
high degree of accuracy, and acquiring and positioning a very
high number of cameras is unrealistic due to budgetary and
engineering constraints (it is what we are trying to avoid in
the first place!).

We therefore propose the use of synthetic datasets. We
first accurately model the capture area in an OpenGl graphi-
cal environment. Using this graphical model, a high number
of plausible camera positions (and camera intrinsic parame-
ters) can be identified. This number is set to be sufficiently
high to ensure saturation in coverage within the required
area of capture. By using a hypothetical camera’s intrinsic
and extrinsic parameters, a camera viewpoint in a real world
scenario can be mimicked to a high degree of accuracy in the
virtual graphical environment.

In order to generate a groundtruth human, we captured a
typical sample set of the types of motions that the subject
is expected to perform at capture time. For example, in this
work, the area of interest is a tennis court, so we used typ-
ical human tennis movements captured in a Vicon motion
capture studio. However, a variety of publicly available mo-
tions [1] could have been used for different scenarios. The
data allows synthetic human motion to be rendered within
the virtual reconstruction. Using this virtual environment,
synthetic video streams of expected human animation from
each of the virtual cameras can be generated. The voxel
carving of the synthetic player is then be performed (as de-
scribed in section 4) from all of the virtual camera view-
points for any individual time instant or complete video se-
quence. The resulting volumetric representations are taken
as a groundtruth dataset, as they can be seen as the highest
quality 3D reconstruction that could be achieved given an
unlimited number of cameras.

Using this setup, the carvings from any subset of the cam-
era positions can also be acquired. We quantify the result-
ing error by calculating the Normalised Mean Square Er-
ror (NMSE) of the groundtruth volumetric reconstruction
against any reconstruction from an inferior camera setup.
The 3D NMSE between the two volumes is possible as the
space carvings are written in real world Euclidean coordi-
nates. In this work, the MSE is normalised with respect to
the number of voxels used in a carving, typically of the order
of 10° voxels, to allow for a direct comparison. The NMSE
cost function will be 0 if the two volumes are identical, ris-
ing to 1 if there is no spatial volume in common between the
two volumes.

4. VOXEL CARVING APPROACH

We use our own approach to the acquisition of the 3D



(

Figure 1: Real-world reconstruction; (Row 1) 5 camera views; (Row 2) Model from 5 camera views.

human volumetric representations that is tailored towards a
tennis scenario [4]. The approach is completely autonomous
and requires no human interaction. There are several com-
ponents of this system including player tracking, background
subtraction, silhouette extraction and voxel carving. An
overhead camera is used for player tracking. Player track-
ing is required as it automatically approximates player po-
sition on the tennis court groundplane, allowing for a choice
of the initial virtual cube for voxel carving — note that a
good choice can have a considerable impact on the results
of the reconstruction process [6]. Using the tracked players
bounding box, a cube is then drawn around the player and
this represents the most probable spatial volume that is oc-
cupied by the player. The cube height is set to a standard
player height, in this study 2.4 metres. The number of vox-
els dynamically changes with each frame so as to maintain
a constant voxel spatial resolution.

Using intrinsic and extrinsic camera calibration parame-
ters the cameras in which the player-cube appears can be
easily identified. The real-world coordinates of this spatial
volume can then be transformed into camera coordinates
for any of the cameras and specific region where the player
appears in each image can be isolated from the rest of the
image. By restricting the silhouette extraction algorithm to
only search within the bounds of the player-cube in each
image the computational effort of the silhouette extraction
is significantly reduced. The silhouette extraction algorithm
is based on an approximate median background subtraction
model [4] and the entire process is autonomous.

After the player silhouettes are constructed, the space
carving technique, which follows from the technique of Yang
at el [9], is performed. To reduce the strain on available
computer memory that traditional voxel carving techniques
can have, an initial carving is carried out at a low voxel spa-
tial resolution. The spatial volume surrounding the player
can therefore be optimised and a second, more accurate,
player-cube is calculated. A second space carving is then
carried out at a higher voxel spatial resolution. An example
carving for a single time instant in a real-world setup with
5 cameras using this approach can be seen in figure 1.

5. QUANTITATIVE EVALUATION

For this study, we evaluate the trade-off between cost (i.e.
number of cameras) and reconstruction accuracy using the
NMSE measure in a specific application scenario, namely
our real-world a tennis court facility. For this analysis, we

focused 50 virtual cameras on a single side of a tennis court
— cameras were positioned according to the physical con-
straints of the environment (for example, cameras were not
placed on the court, or located in areas where there are no
physical structures — as such, cameras could only be placed
on a 220 degree arch around the court due to the presence of
other tennis courts). Taking several still frames from a video
sequence (see figures 3(a), (b) and (c¢) for example), we im-
plemented the voxel carving algorithm using all 50 cameras
to perform the carving operation. The resultant volumetric
representation of the tennis player represents the best pos-
sible, or groundtruth, space carving that could be obtained.
Three such acquired models can be seen in figure 3, rows (i),
(iii) and (v), in each of these figures the reconstruction is a
volumetric shape and is shown at 8 different angles, each
separated by 45 degrees.

We then randomly remove a virtual camera and perform
the voxel carving again. This new volumetric representation
is slightly different to the previous one as it has been cut
with fewer cameras and the decrease in accuracy from the
groundtruth carving is quantitatively evaluated using the
NMSE measure, as outlined in section 3. Figure 2 shows
how the NMSE error indicates the fall off in accuracy of the
space carving as the number of cameras is reduced. It can
be seen that by using only 5 cameras a space carving with
an NMSE of 0.4729 with respect to the groundtruth can be
obtained. Some example carvings for synthetic data from
our 5 real-world cameras positions, as shown in figure 1, are
illustrated in figure 3, rows (ii), (iv) and (vi). It should be
noted that the results in figure 3(vi) are noisier than those in
rows (ii) and (iv) due the increased complexity of the pose,
as the player is leaning forwards and his arms are folded
inward generating occlusions. From figure 2 we could thus
infer that better quality representations may be achievable
by adding another camera (to bring the NMSE < 0.4) but
that no further significant improvements beyond this would
be obtained until we reached 9 cameras.

6. CONCLUSIONS

In this study we presented a technique to quantify the
accuracy achievable via spatially carved volumetric repre-
sentations based on real world constraints. We used a 3D
reconstruction technique developed for an amateur sport-
ing environment and illustrated how we could quantitatively
evaluate its performance by simulating realistic human mo-
tion and virtual placement of a large number of cameras.



(ii)
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Figure 3: Synthetic data volumetric reconstruction; (a)/(b)/(c) Example viewpoint of model pose; (i)/(iii)/(v)
Reconstruction produced from 50 cameras; (ii)/(iv)/(vi) Reconstruction produced from 5 cameras.
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Figure 2: Quantitative evaluation of space carvings
with regard to the number of cameras used.
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