
International Journal of Networked and Distributed Computing
Vol. 7(4); September (2019), pp. 149–157

DOI: https://doi.org/10.2991/ijndc.k.190911.002; ISSN 2211-7938; eISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

Research Article

Efficient Searching for Essential API Member Sets based
on Inclusion Relation Extraction

Yushi Kondoh*, Masashi Nishimoto, Keiji Nishiyama, Hideyuki Kawabata, Tetsuo Hironaka

Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan

1.  INTRODUCTION

Application software for mobile devices is essentially developed
as a combination of Application Programming Interfaces (APIs)
of libraries or frameworks [1]. In fact, on average, 30–50% of the
entire source code of Android applications is said to be occupied
with method calls related to Android APIs [1]. Application devel-
opers are definitely required to have enough knowledge on how to
properly choose and use appropriate API methods according to the
functionalities to be realized. However, detailed information about
the API methods is often not well documented. In addition, library
and framework versions are frequently updated [2] and the speci-
fications of API methods may change a lot from version to version.
As such, it is not easy to obtain suitable information on the proper
usage of combining multiple API methods to implement intended
functionalities.

To help software engineers develop API-based applications effi-
ciently, making use of API usage patterns obtained by mining open
source repositories are supposed to be promising. There could be
several styles of API usage patterns, such as those in the forms
of API method call sequences or API member sets. There are a
number of studies on the development of support tools that utilize
API usage patterns [1–11]. Some help the user search examples of
API usages [8] and others recommend appropriate API methods
[9] or combinations of API methods [2,7] to support smooth devel-
opment of software.

Search-based support tools for application development try to
gather related information to queries given explicitly or implicitly

by the user and select as appropriate information as possible to
respond to the user. However, picking out appropriate candidates
from the huge amount of similar ones is an inherently difficult task.
In addition, given queries for search would be quite vague in most
cases. Existing tools appear to either impose too much work on the
user side or only support the user at a rather later stage of develop-
ing where there would not be many choices left.

In this paper, we present a method to let the user efficiently search
a large number of API member sets extracted from open source
repositories. What we offer in this paper is not an ordinary lexi-
cographical search regarding API member sets as text documents,
but a functionality-oriented search focusing on element-wise dif-
ferences among API member sets. In the method, the frequent pat-
tern mining [12] is applied to a large number of API member sets
to extract inclusion relationships among API member sets. The
extracted information can be expressed using inclusion graphs,
where each node is weighted according to statistical information.
The graph can be effectively used for searching and/or recom-
mending suitable API method sets.

To evaluate the method, we designed a tool with a GUI for search-
ing API member sets. By using the tool, the user can obtain an API
member set that is considered useful for implementing the target
functionality, by simply tracing the presented graphs. In this paper,
we show the design and implementation of the prototype of the
API member set search system and discuss the usefulness of it.

The rest of the paper is organized as follows. In Section 2, we intro-
duce our approach by showing a motivating example. In Section 3,
we describe the idea of utilizing inclusion graphs for searching
API member sets. In Section 4, we describe the design of an API
member set search system. In Section 5, we discuss the effectiveness

A RT I C L E I N F O
Article History

Received 23 March 2019
Accepted 20 May 2019

Keywords

API member set
frequent pattern mining
application development
open source repositories
Android

A B S T R AC T
Search tools for Application Programming Interface (API) usage patterns extracted from open source repositories could provide
useful information for application developers. Unlike ordinary document retrieval, API member sets obtained by mining are
often similar to each other and are mixtures of several unimportant and/or irrelevant elements. Thus, an API member set search
tool needs to have the ability to extract an essential part of each API member set and to be equipped with an efficient searching
interface. We propose a method to improve the searchability of API member sets by utilizing inclusion graphs among API
member sets that are automatically extracted from source code. The proposed method incorporates the frequent pattern mining
to obtain inclusion graphs and offers the user a way to search appropriate API member sets smoothly and intuitively by using a
GUI. In this paper, we describe the details of our method and the design and implementation of the prototype and discuss the
usability of the proposed tool.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: kondoh@ca.info.hiroshima-cu.ac.jp

https://doi.org/10.2991/ijndc.k.190911.002
https://www.atlantis-press.com/journals/ijndc
http://creativecommons.org/licenses/by-nc/4.0/
mailto:kondoh%40ca.info.hiroshima-cu.ac.jp?subject=

150	 Y. Kondoh et al. / International Journal of Networked and Distributed Computing 7(4) 149–157

of the tool based on the results of some case studies. Section 6 shows
a summary of related work and is followed by concluding remarks
in Section 7.

2.  MOTIVATION AND AIMS

2.1.  API Member Set Search and its Effects

It is common that many API method calls are combined to implement
a particular functionality in an application. Figure 1 shows a code
segment of a typical Android application program. There are several
methods and a named constant that belong to Android APIs, used in
the program. Among them, getDefaultSensor, register-
Listener, unregisterListener, and TYPE_PROXIMITY
are cooperating to implement a sensor-related functionality. On the
other hand, DataToFileWriter, writeToFile, and close-
Files are used for accessing files. You can see from the figure a
couple of facts that are common for Android applications: (1) mul-
tiple method calls from separate method definitions are cooperating
for implementing a particular functionality, and (2) although groups
of API members are used for implementing relatively independent
functionalities, call/used sites of them are mixed and scattered all
over the source code. These properties that are typical of event-
driven programs make it a burden to separate a code segment that
implements a single functionality from Android programs, leading
the difficulty of building and maintaining Android applications.

If developers can easily obtain in advance the sets of API members
that should be used to implement a specific feature, the user can
avoid spending much time to decide which API methods to use
and can write code focusing only on how to combine API meth-
ods in the set. Searching for the API methods that satisfies several
conditions such as cooperability with other API methods may be
much more laborious than just arranging elements in a fixed set of

API methods. Tools that can recommend suitable sets of API members
seem to be of great help for application developers.

2.2.  Realizing API Member Set Search

Application Programming Interface member set search systems
should be based on the mining of open source repositories because
the result should be up-to-date and full of variety. However, a search
system based on a naive ranking capability would make the user
stray in the sea of similar API member sets on the recommended
list that is output as the result of searching.

Figure 2 shows an example of the result of an API member set
search obtained by using the CAPIS system [7] (http://capis.ca.info.
hiroshima-cu.ac.jp:8090/). CAPIS treats API member sets as a kind
of text documents and ranks each one by using the TF-IDF (term
frequency-inverse document frequency) measure. This approach
would be effective for the ordinary document search where each
document is sufficiently large and contains many kinds of words
so that each one is rather distinguishable form others. The results
in Figure 2 shows numbers of similar API member sets that are
related to the given keywords of “text” and “view”. It would be diffi-
cult for the user to scan the lengthy list to select the one that should
correspond to the functionality the user had desired to implement.

As can be seen from the example in Figure 2, the search results of
API method sets in a one-dimensional list format is not suitable
for the user to effectively utilize the search results. One reason for
this is that the search target is not a single API method to invoke
but a set of API methods to combine. That is, a query expressed by
a small number of search terms cannot be specific enough to pin-
point a suitable set of API calls in the large database obtained from
open source repositories.

In order to alleviate the situation and realize an effective API
member set search, we focus on the relevance of each API member
in a set to restructure API member sets to construct a kind of search
tree. We observe that there are a couple of cases: (1) a few members

Figure 1 | Common pattern of Android programs composed of API
method calls. Figure 2 | Screenshot of CAPIS, an API member set search tool.

http://capis.ca.info.hiroshima-cu.ac.jp:8090/
http://capis.ca.info.hiroshima-cu.ac.jp:8090/

	 Y. Kondoh et al. / International Journal of Networked and Distributed Computing 7(4) 149–157	 151

in an API member sets play important roles and the others are
not, and (2) an API member set consists of several loosely related
groups of closely related members. To refine and reorganize API
member sets, we carry out the frequent pattern mining to extract
inclusion relations mediated by newly produced subsets. The inclu-
sion graphs constructed from the inclusion relations among API
member sets are directly usable for API member set search; the
user (or an algorithm) can trace the edges from a suitably small
start point to an appropriate one, checking if the addition of a few
API members is reasonable, step-by-step.

2.3. � Designing API Member Set
Search System

In this paper, we propose an API member set search system. The
system consists of two parts; one is for collecting API usage infor-
mation from open source repositories, extracting inclusion relations
among API member sets by using the frequent pattern mining, and
constructing inclusion graphs as a database for the API member set
search, and the other is a GUI for the search system. We describe
each part in Sections 3 and 4, respectively, in detail.

3. � EXTRACTING INCLUSION RELATIONS
BETWEEN API MEMBER SETS BY
FREQUENT PATTERN MINING

In order to facilitate an efficient search of the API member sets, we
clarify the relationships among sets in the large set of API methods
that are obtained from open source repositories. By expressing the
hierarchy extracted from the relationships explicitly, we could con-
struct a database that would be usable as a basis that is easily usable
for the developer or a recommendation system.

3.1.  Various Roles of API Methods

Each API method in a set of API methods that are required to imple-
ment a specific functionality might be roughly classified into two
groups based on the roles for each set, i.e., those that play a central

role and inevitable to implement the functionality and those that are
used to just extend and/or adjust the behavior of the functionality.
The former API methods are considered to appear in common in API
member sets for a specific functionality, while the others are not. The
more important a method is for a functionality, the more often it seems
to appear in API member sets related to the functionality. From the
observation, we can expect that the API member sets that are related
to the same functionality can be organized to extract their hierarchical
relationships by analyzing inclusion relations. The hierarchical rela-
tionships of sets can be represented by using a graph structure.

3.2. � Extraction of Hierarchical Relationships
by using Frequent Pattern Mining

The frequent pattern mining [12] is considered to be effective in
constructing the hierarchical graph structures. The frequent pat-
tern mining is a method to extract frequently appearing subsets
from a set of input item sets. We can obtain the hierarchical rela-
tions by analyzing the inclusion relations among the sets.

Applying the frequent pattern mining to the sets of API method
sets might reveal the fact that, e.g., a particular couple of meth-
ods are always used simultaneously. In order to obtain those kinds
of facts in the inclusion graphs, we use FP-Close algorithm [13]
while carrying out the frequent pattern mining so that such kind of
important pairs are not treated separately. For example, API meth-
ods registerListener and unregisterListener are a
representative pair of the kind. Closed itemsets generated by the
FP-Close algorithm should contain both of the two or none of them
if the two methods are always used together.

3.3. � Usability of Inclusion Graphs
among API Method Sets

From the subsets obtained by applying the frequent pattern mining
to the original API member sets and analyzing the inclusion rela-
tionships among sets, we can obtain, for example, the graph struc-
ture depicted in Figure 3 from the five API member sets shown in
Figure 2. Rectangles and ovals in Figure 3 represent API member

Figure 3 | Inclusion relations among API member sets represented as a graph.

152	 Y. Kondoh et al. / International Journal of Networked and Distributed Computing 7(4) 149–157

sets and the differences between adjacent sets, respectively.
Directed edges between rectangles through ovals are drawn such
that when API member set A is a subset of B, there is always a path
from A to B. The seven API member sets in Figure 3 are closed
itemsets obtained from five sets in Figure 1. Among them, two are
newly created API method set. Although what is shown in Figure 3
is a single tree, the result of the application of the frequent pattern
mining to API member sets is, in general, a set of graphs.

Inclusion graphs are apparently useful for guiding searching for an
appropriate API member set. For example, presenting a graph of
Figure 3 to the developer would help him/her search for the right API
member set by first selecting important API methods and then mod-
ifying the set by checking if some API methods should be added or
deleted for the functionality to be implemented. Compared with the
task of selecting the target set from the API member sets expressed in
a one-dimensional form such as a list, it is considered that the burden
on the developer is greatly reduced. However, there might be a prob-
lem since the graph of Figure 3 could become quite huge. In order to
construct an API method set search system that uses the inclusion
graphs directly, a specially arranged GUI would be inevitable. The
graph representation of the inclusion relations can also be utilized by
recommendation systems of API member sets by algorithmizing the
procedure of tracing the edges of an inclusion graph.

4. � API MEMBER SET SEARCH SYSTEM
BASED ON INCLUSION GRAPHS

4.1.  Overview of the Tool

We propose an API Member Set Search System with an interactive
interface for developers to search API member sets efficiently. By using
the system, the user can search for an API member set consisting of
API methods that are inevitable to implement the functionality in his/
her mind. In order to support the task of selecting one from a large
number of API member sets collected from open source repositories,
the system extracts the inclusion relationships among API member
sets to obtain inclusion graphs such as the one shown in Figure 3. By
tracing this graph, the user can search for an appropriate set of API
methods as if collecting a set of API methods adding one-by-one in
order of appearance frequently. However, the generated graphs could
become huge in general. The proposed system offers a way to trace the
tree structure easily and effectively by using the mouse.

The GUI of the system is as shown in Figure 4. The left pane of the
window is used for listing tag clouds where each tag cloud is linked
to a graph of API member sets. We expect that, by using tag cloud
representations for describing overviews of functionalities, the user
can intuitively select the right graph corresponding to the sets of
API methods that are closely related to the functionality the user
desire to implement.

When the user selects a tag cloud, the root node and its neighbor-
ing parts of the corresponding API member set graph is drawn in
the right pane. Only one API member set (in a rectangle) is shown
in the right pane at a time. The rectangle node in Figure 4 corre-
sponds to the set Z in Figure 3. Oval nodes in the periphery indi-
cate the difference between the central API member set and the sets
connected in a parent–child relationship (we call those oval nodes
Diffnodes). The user can intuitively grasp the differences between

API member sets by looking at the small number of API meth-
ods in Diffnodes. When the user clicks a Diffnode, corresponding
API member set is drawn in the center of the right pane. Thus, the
user can trace the inclusion graph transferring the focus from one
API member set to another. The lower part of Figure 4 illustrates a
transfer of the focus from set Z to set Y in Figure 3.

As shown in Figure 4, each rectangle’s frequency information is
available. Numbers in and out of the parentheses are the number
of source files and the number of API member sets that include
the members in each rectangle, respectively. Numbers attached to
Diffnodes are the same as the numbers attached to the hidden rect-
angles that should exist beyond the Diffnodes.

For example, We can see the rectangle shown in the center of the
lower part of Figure 4 is labeled as “46(0)”, meaning that there are a
total of 46 source files that include calls for both “findViewById” and
“setText”, but no API member set consisting of only these two API
methods exists, meaning that the child node beyond the Diffnode is
a closed itemset generated by the frequent pattern mining.

4.2.  System Structure

The structure of the proposed tool is illustrated in Figure 5. As
shown in Figure 5, our tool consists of two parts; the Database
Constructor and the Browser.

In the Database Constructor, three components are combined to
construct the database for facilitating the API member set search.
First, API member sets are extracted from a set of source files by the
API Member Set Extractor. The grouping is carried out by using a
dependency analysis; similar techniques have been used elsewhere,
e.g., in the SSS system [14]. The obtained sets of API member sets
are gathered and undergo the frequent pattern mining [12] by the
API Member Set Graph Generator. In the process, obtained closed
itemsets are analyzed to construct inclusion graphs of API sets.
The frequency information is used to annotate nodes of the graphs.

Figure 4 | Screenshot of the API member set search tool.

	 Y. Kondoh et al. / International Journal of Networked and Distributed Computing 7(4) 149–157	 153

The major part of the Database Builder’s job is to index multi-
ple graphs by using a list of annotations where each annotation
is represented in the form of a tag cloud. Tag cloud generation is
described in the next section.

The Browser is a GUI through which the user can interact with the
system. The behavior of the GUI is as outlined in Section 4.1.

4.3. � Tag Cloud Annotation Generation
for Each Inclusion Graph

There might be multiple inclusion graphs constructed by the API
Member Set Graph Generator. Some graphs could have multiple
root nodes that have no parents. Each of these root nodes likely
corresponds to an important API member set for implementing a
particular functionality. We treat the root nodes of multiple graphs
as starting points of searching.

We will explain the way to generate tag cloud annotations cor-
responding to all root nodes. First, we extract class names and
method names from the names of API methods that make up the
root node of each graph and extract words by them. Second, we
apply the morphological analysis to the extracted words to nor-
malize each word and weight them by using the TF–IDF method
regarding that each set of words constructs a document.

The generated list of tag cloud annotations is shown to the user
and used for deciding from which node to start tracing the inclu-
sion graphs.

4.4.  Implementation of the Prototype

We have implemented a prototype of the API member set search
system. We used Java language to write the prototype. SPMF [15]
is used for the frequent pattern mining in API Member Set Graph
Generator, and Apache Lucene (https://lucene.apache.org/core/)
libraries are used to build Database Builder.

5.  EVALUATION

To evaluate the usefulness of the proposed method and the tool, we
conducted a set of experiments on the API member set search by
using the prototype of the tool.

5.1.  Datasets Used for the Experiments

We use two kinds of datasets in the experiments:

Google Samples: The set of API methods obtained from Google
Samples (https://github.com/googlesamples). It contains 6112 API
member sets extracted from 158 Android Java projects, obtained in
January 2017.

Github: The set of API methods collected from Android projects
on Github. The dataset was collected in July 2019. A selected part of
the set is used as a dataset in each experiment. In all cases, the size
of the dataset is larger than that of Google Samples.

In both cases, the minimum support threshold is set to 0 while apply-
ing the frequent pattern mining. All experiments were performed on
a MacBook Pro (CPU: Intel Core i7 3.5 GHz, Memory: 16 GB).

5.2. � Usability of the Tool: Search for
API Member Sets by Tracing
Inclusion Graphs

We conducted several attempts of the API member set search to
retrieve information that should be useful for implementing the
Android components listed in Table 1. The dataset from Google
Samples was used for each search. In fact, all the experimental
results were similar. We show the usability of the tool by describing
how the tool would be used for searching for an API member set to
implement the AlertDialog component.

Suppose that you are to implement the AlertDialog pop-up shown in
Figure 6a and search for the set of APIs required for implementing
using the tool. An AlertDialog pop-up in Figure 6a consists of a title,
a message, and a clickable button. Search for the AlertDialog compo-
nent would be carried out smoothly and intuitively as follows.

Figure 5 | Overall structure of the API member set search system.

Table 1 | Common Android components

AlertDialog: Display warning messages on the screen
Toast: Display messages on the screen for a short time
TextView: Display messages on the screen
Snackbar: Show messages at the bottom of the screen
Notification: Display messages on the notification drawer
Seekbar: Help adjust parameters by a draggable thumb
WakeLock: Change sleeping states of the device
BroadcastReceiver: Respond to broadcast messages

https://lucene.apache.org/core/
https://github.com/googlesamples

154	 Y. Kondoh et al. / International Journal of Networked and Distributed Computing 7(4) 149–157

Figure 6 | AlertDialog component of the Android API. (a) AlertDialog on the Android screen. (b) AlertDialog implemented by combining API methods.

Figure 7 | Searching for an API member set by tracing an inclusion graph.

You might choose a tag cloud with the words {Builder, Alert, Dialog} to
start searching. Then the tool would display an API member set that
includes a single API method AlertDialog.Builder.Builder,
which is at the root of the inclusion graph shown in Figure 7.

In Figure 7, we can see a path from the root to the box at the lower
left, on which API method names shown in Diffnodes include
words such as “title”, “message”, “button”, and “click”, which indicate

that they are related to the components that make up parts shown
in Figure 6a. We can easily reach to the lower left box taking fre-
quency information into account; in fact, the number on the low-
ermost Diffnode in Figure 6a indicates that taking a further step
would not gain the appropriateness of the set very much.

Figure 6b shows an example of a code segment that uses all API
methods in the obtained set.

(a) (b)

	 Y. Kondoh et al. / International Journal of Networked and Distributed Computing 7(4) 149–157	 155

Table 2 | Numbers of API member sets extracted from Google Samples

Upper limit of API member set size – 50 30 20 10
API member sets 6112 6099 (99.8%) 6067 (99.3%) 6001 (98.2%) 5731 (93.8%)
API member sets (duplicates omitted) 2373 2360 (99.5%) 2330 (98.2%) 2270 (95.7%) 2080 (87.7%)
Number of closed itemsets 8375 7435 (88.8%) 6178 (73.8%) 4885 (58.3%) 2312 (27.6%)
Elapsed time for extracting[s] 29.6 11.3 (62.3%) 7.3 (24.3%) 5.3 (17.7%) 4.71 (15.8%)

5.3. � Constructing an Inclusion Graph:
the More You Pay, the More You Get

The frequent pattern mining is known to be a computationally
expensive method. Table 2 summarizes the effect of putting a
restriction on the maximum size of API member sets while pro-
cessing the data form Google Samples. The numbers in parentheses
in Table 2 show the percentages against the leftmost numbers. As
shown in Table 2, we can see that the time required to construct the
database for API member set search significantly decreases when
the maximum size of each API member set is limited. The negative
effect of the limitation of maximum API member set size might
look small in Table 2. However, the lost information includes that
on API methods related to major classes as listed in Table 3.

All the listed classes in Table 3 tend to require to combine many
API methods to realize a specific functionality. Table 3 shows the
number of API method sets that include indispensable API meth-
ods to implement each functionality. A set of functionality, such
as Camera, which requires many API methods to implement and
which can often be combined with other functionalities, is heavily
influenced by the size limitations.

The loss shown in Table 3 might be attributed to the fact that there
are too few sample projects that use cameras or music recording
facilities in Google Samples. However, it might not be a good idea
to limit the size of the set because there is a risk of losing some
amount of important information.

5.4. � Searching Github: a Larger Source
of Information

Although Google Samples contains many informative examples
for developing Android applications, the set of examples does not
cover all of the Android APIs and some functionalities are barely
involved. In this section, we describe what happens when you use a
dataset obtained from a wider range of Github.

Figure 8 shows the distribution of the API method sets obtained
from Google Samples and Github. All API method sets counted
in Figure 8 are related to the Android components listed in Table 1
(498 projects on Github). Figure 8 illustrates that Github offers a
richer variety of data. Figure 9a and b shows the same situation of
searching API method sets related to the WakeLock component.
Comparing Figure 9a and b, you can see that the API method

usages demonstrated in Google Samples are quite limited. Figure 10
shows one of the extreme cases where Google Samples can not
offer a candidate but Github presents a promising set with mod-
ification choices.

As such, larger dataset leads a better performance in general.
The proposed tool appears to be able to make the most use of
larger dataset.

6.  RELATED WORK

Extraction of API usage patterns for supporting program develop-
ment has been studied for a decade. MAPO [3] extracts API usage
patterns by applying clustering to the API method call sequences
collected from the source code. The obtained information is used
for API method recommendation and code snippet presentation.
The presentation of candidates is in the form of a list. UP-Miner
[4], that claims it outperforms MAPO [3], incorporates a method to
mine frequent API method call sequences and visualize the mined
sequence information with a probability graph. Their main focus
seems to be dealing with information on method call sequences for
recommending API usages. Our approach is different in that we
rather pay attention to dealing with related method calls scattered
in a program to support the development of event-driven applica-
tions for which you can not depend only on method call sequences.
Instead of recommending a piece of code to be inserted at a certain
place in the source code, our tool helps search for an API member
set to be used together in the source code. This supports the devel-
opment of event-driven applications.

DroidAssist [5], which supports the development of Android appli-
cations, is an API recommendation tool based on Hidden Markov
Model. DroidAssist supports the step-wise development of a pro-
gram efficiently. Our approach offers the other kind of support of

Table 3 | Numbers of API member sets related to specific functionalities

Upper limit of API member set size – 50 30 20 10
Music playback (android.media.MediaPlayer) 7 7 5 3 3
Camera (android.hardware.camera2) 4 1 1 1 1
Recording (android.media.MediaRecorder) 2 1 1 0 0

Figure 8 | Distribution of the sizes of API member sets related to the
components in Table 2.

156	 Y. Kondoh et al. / International Journal of Networked and Distributed Computing 7(4) 149–157

Figure 9 | Parts of API member set graphs related to a WakeLock component. (a) Based on Google Samples. (b) Based on Github.

Figure 10 | Part of an API member set graph related to the MediaRecorder component based on Github.

the user; our tool can be used for superposing functionalities one at
a time like the SSS tool [14].

Examplore [10] recommends the usage of an API method desig-
nated by the user. When recommending, the system presents a
code skeleton that contains information such as enclosing control
structures and the hints on how to handle arguments and has an
interactive interface that completes the code interactively. It is simi-
lar to our tool in that it can present and search certain API member
sets, but our tool does not require the user to provide the key API
method in advance. In addition, our tool can treat multiple API
methods as a set where each of which might be used in separate
locations in a source program.

ExPort [10] supports hierarchical API method search utilizing
Relational Topic Model. After determining the key API method
from the global view, the presentation of information based on the
call graph is done. It is similar to our system’s idea in that it focuses
not only on local sequences but also on the relationship between
global API methods.

Application Programming Interface usage patterns are useful for
debugging as well as program development support. PR-Miner [6]
uses the frequent pattern mining to automatically extract undocu-
mented implicit programming rules. The extracted patterns can be
used to detect violations of API usages in the program. DynaMine
[16] extracts application-specific patterns using revision history
and has been shown to be effective for violation detection in large-
scale applications.

7.  CONCLUSION AND FUTURE WORK

We have proposed a method for effectively presenting the inclu-
sive relations among API member sets extracted from a large
number of the set of API member sets for the purpose of improv-
ing the searchability of appropriate API member sets to support
the development of event-driven applications. We have developed
the prototype of the system and carried out several experiments to
evaluate the system. Experimental results show that the proposed

(a) (b)

	 Y. Kondoh et al. / International Journal of Networked and Distributed Computing 7(4) 149–157	 157

method is easy to use and the obtained information is useful for
application development.

There are several approaches to improve our method. The pro-
posed system provides the user with a technique to search for the
API member set that is required for implementing the desired func-
tionality based on the keyword given by the user. However, since
the information obtained as a search result is a set of API method
names, it would take some amount of time to reflect the obtained
information into the program at hand. It would be effective to inte-
grate the feature [14] of automatically merging (superposing) the
selected code skeleton into the code at hand.

The proposed system offers a simple way for searching API member
sets to the user based on API member set graphs. By utilizing API
member set graphs, we expect that an effective recommendation of
API member sets with high utility could be realized.

We have used Google Samples as an open source repository for
extracting API member sets and evaluating the usability of the
proposed system as a support tool for developing Android appli-
cations. In addition, we confirmed that the tool can make use
of larger datasets. Our future work includes detailed evaluations of
the tool’s applicability and effectiveness in the case of the usage of
frameworks for other than Android. We also plan to carry out the
evaluation based on the user study.

CONFLICTS OF INTEREST

The author declares they have no conflicts of interest.

REFERENCES

  [1]	 J.E. Montandon, H. Borges, D. Felix, M.T. Valente, Documenting
APIs with examples: lessons learned with the APIMiner plat-
form, 2013 20th Working Conference on Reverse Engineering
(WCRE), IEEE, Koblenz, Germany, 2013, pp. 401–408.

  [2]	 Y. Lamba, M. Khattar, A. Sureka, Pravaaha: mining android
applications for discovering API call usage patterns and trends,
Proceedings of the 8th India Software Engineering Conference
(ISEC), ACM, Banglore, India, 2015, pp. 10–19.

  [3]	 H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei, MAPO: mining and
recommending API usage patterns, in: S. Drossopoulou (Eds.),
European Conference on Object-Oriented Programming,
Lecture Notes in Computer Science, vol. 5653, Springer-Verlag,
Berlin Heidelberg, 2009, pp. 318–343.

  [4]	 J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, D. Zhang, Mining
succinct and high-coverage API usage patterns from source code,
2013 10th Working Conference on Mining Software Repositories
(MSR), IEEE, San Francisco, CA, USA, 2013, pp. 319–328.

  [5]	 T.T. Nguyen, H.V. Pham, P.M. Vu, T.T. Nguyen, Recommending
API usages for mobile apps with hidden Markov model, 2015 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, Lincoln, NE, USA, 2015, pp. 795–800.

  [6]	 Z. Li, Y. Zhou, PR-Miner: automatically extracting implicit
programming rules and detecting violations in large software
code, Proceedings of the 10th European Software Engineering
Conference held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/
FSE), ACM, Lisbon, Portugal, 2005, pp. 306–315.

  [7]	 M. Nishimoto, H. Kawabata, T. Hironaka, A system for API set
search for supporting application program development. IEICE
Trans. Inf. Syst. J101-D (2018), 1176–1189 (in Japanese).

  [8]	 R. Hoffmann, J. Fogarty, D.S. Weld, Assieme: finding and lever-
aging implicit references in a web search interface for program-
mers, Proceedings of the 20th Annual ACM Symposium on User
Interface Software and Technology (UIST), ACM, Newport,
Rhode Island, USA, 2007, pp. 13–22.

  [9]	 E. Duala-Ekoko, M.P. Robillard, Using structure-based recom-
mendations to facilitate discoverability in APIs, Proceedings of
the 25th European Conference on Object-oriented Programming
(ECOOP), ACM, Lancaster, UK, 2011, pp. 79–104.

[10]	 E.L. Glassman, T. Zhang, B. Hartmann, M. Kim, Visualizing API
usage examples at scale, Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI), ACM, Montreal
QC, Canada, 2018, pp. 580:1–580:12.

[11]	 E. Moritz, M. Linares-Vasquez, D. Poshyvanyk, M. Grechanik,
C. McMillan, M. Gethers, Export: Detecting and visualizing API
usages in large source code repositories, 2013 28th IEEE/ACM
International Conference on Automated Software Engineering
(ASE), IEEE, Silicon Valley, CA, USA, 2013, pp. 646–651.

[12]	 J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate
generation, Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (SIGMOD), ACM, Dallas,
Texas, USA, 2000, pp. 1–12.

[13]	 G. Grahne, J. Zhu, Fast algorithms for frequent itemset mining
using FP-trees, IEEE Transactions on Knowledge and Data
Engineering, IEEE, 2005, 1347–1362.

[14]	 M. Nishimoto, K. Nishiyama, H. Kawabata, T. Hironaka, Easy-going
development of event-driven applications by iterating a search-
select-superpose loop, J. Inform. Process. 27 (2019), 257–267.

[15]	 P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.W. Wu,
V.S. Tseng, SPMF: a Java open-source pattern mining library.
J. Mach. Learn. Res. 15 (2014) 3569–3573.

[16]	 B. Livshits, T. Zimmermann, DynaMine: finding common error
patterns by mining software revision histories, Proceedings
of the 10th European Software Engineering Conference held
Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE), ACM,
Lisbon, Portugal, 2005, pp. 296–305.

https://doi.org/10.1109/WCRE.2013.6671315
https://doi.org/10.1109/WCRE.2013.6671315
https://doi.org/10.1109/WCRE.2013.6671315
https://doi.org/10.1109/WCRE.2013.6671315
https://doi.org/10.1145/2723742.2723743
https://doi.org/10.1145/2723742.2723743
https://doi.org/10.1145/2723742.2723743
https://doi.org/10.1145/2723742.2723743
https://doi.org/10.1007/978-3-642-03013-0_15%0D
https://doi.org/10.1007/978-3-642-03013-0_15%0D
https://doi.org/10.1007/978-3-642-03013-0_15%0D
https://doi.org/10.1007/978-3-642-03013-0_15%0D
https://doi.org/10.1007/978-3-642-03013-0_15%0D
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/ASE.2015.109
https://doi.org/10.1109/ASE.2015.109
https://doi.org/10.1109/ASE.2015.109
https://doi.org/10.1109/ASE.2015.109
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/1294211.1294216
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1109/ASE.2013.6693127
https://doi.org/10.1109/ASE.2013.6693127
https://doi.org/10.1109/ASE.2013.6693127
https://doi.org/10.1109/ASE.2013.6693127
https://doi.org/10.1109/ASE.2013.6693127
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/335191.335372
https://doi.org/10.1109/TKDE.2005.166
https://doi.org/10.1109/TKDE.2005.166
https://doi.org/10.1109/TKDE.2005.166
https://doi.org/10.2197/ipsjjip.27.257
https://doi.org/10.2197/ipsjjip.27.257
https://doi.org/10.2197/ipsjjip.27.257
https://doi.org/10.1145/1081706.1081754
https://doi.org/10.1145/1081706.1081754
https://doi.org/10.1145/1081706.1081754
https://doi.org/10.1145/1081706.1081754
https://doi.org/10.1145/1081706.1081754
https://doi.org/10.1145/1081706.1081754

