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ABSTRACT
In recent years, more and more attention has been paid to single image super-resolution reconstruction (SISR) by using deep
learning networks. These networks have achieved good reconstruction results, but how to make better use of the feature infor-
mation in the image, how to improve the network convergence speed, and so on still need further study. According to the above
problems, a novel deep residual dense network (DRDN) is proposed in this paper. In detail, DRDN uses the residual-dense
structure for local feature fusion, and finally carries out global residual fusion reconstruction. Residual-dense connection can
make full use of the features of low-resolution images from shallow to deep layers, and provide more low-resolution image infor-
mation for super-resolution reconstruction. Multi-hop connection can make errors spread to each layer of the network more
quickly, which can alleviate the problem of difficult training caused by deepening network to a certain extent. The experiments
show that DRDN not only ensure good training stability and successfully converge but also has less computing cost and higher
reconstruction efficiency.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Single image super-resolution reconstruction (SISR) is to recon-
struct a corresponding high-resolution (HR) image based on a low-
resolution (LR) image by a certain algorithm. The super-resolution
reconstruction, implemented at the algorithm level, can help to
break the limitations of some imaging devices. Therefore, it is
widely used inmedicine imaging [1], satellite images, securitymon-
itoring [2], and so on.

SISR is an ill-posed inverse problem. This indicates that there are
many different solutions to reconstruct the HR image from the cor-
responding LR image. The early super-resolution reconstruction
methods are mainly interpolation methods. Although this kind of
method is relatively simple, the reconstruction effect is not so ideal.
Other methods for image super-resolution reconstruction mainly
include the method by using prior information of the image [3,4],
internal patch recurrence method [5,6], and traditional learning-
based reconstruction methods [7–9]. In recent years, with deep
learning network showing strong learning ability, more deep learn-
ing effective reconstruction method has been widely used to solve
the ill-posed problem of image super-resolution reconstruction.

Dong et al. firstly applied the deep learning network to real-
ize image super-resolution reconstruction (SRCNN) [10]. SRCNN
constructed a three-layer convolutional neural network for the
mapping of LR image to HR image. Its reconstruction effect
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was significantly improved compared with the traditional learning
algorithm.

With the success of deep neural network in ImageNet [11,12],
the application of deep neural network in image super-resolution
reconstruction has become an important research content. Accu-
rate Image Super-Resolution (VDSR) [13] deepened the depth of
convolutional neural network to 20 layers. In order to ensure the
effective convergence of deep neural network in training, VDSR
introduced global residual connection and gradient clipping tech-
nology. Inspired by the residual network model, deeply-recursive
convolutional network (DRCN) [14] and deep recursive residual
network (DRRN) [15] were proposed one after another. In addition
to deepening the network, efficient sub-pixel convolutional neu-
ral network (ESPCN) [16] convolved directly on LR images, and
finally used sub-pixel convolution layer to realize up-sampling pro-
cess. Densely connected convolutional networks (DenseNet) [17]
maximized the transmission of feature information between layers
by densely connecting and the dense connection made full use of
the feature maps obtained by each convolutional layer. Inspired by
DenseNet, Tong et al. [18] firstly introduced dense network to real-
ize super-resolution image reconstruction.

Besides deepening the network, many researchers also proposed
other structures to get better reconstruction results. Dong et al.
[19] proposed a compact hourglass-shape CNN structure, namely
FSRCNN, for faster and better SR, and re-designed the SRCNN
structure mainly in three aspects. Wei-Sheng et al. [20] proposed
the Laplacian Pyramid Super-Resolution Network (LapSRN). They
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trained LapSRN with deep supervision using a robust Charbonnier
loss function and achieved high-quality reconstruction. Namhyuk
et al. [21] designed an architecture that implements a cascading
mechanism upon a residual network, and also presented variant
models of the proposed cascading residual network (CARN) to
further improve efficiency. Xiangxiang et al. [22] proposed a fast,
accurate, and lightweight super-resolution (FALSR) method to get
the balance between the restoration capacity and the simplicity of
models.

Although the above methods have achieved good reconstruction
results, with the deepening of network layers, the network parame-
ters will increase dramatically and the network itself becomes more
difficult to train and converge. On the other hand, many useful
features obtained in each layer are often neglected in above net-
works. Moreover, information of each layer is often fused to a
certain middle layer, rather than directly used for the final
reconstruction, which will affect the utilization of layer’s feature
information.

Aiming at the above problems, this paper proposes a deep residual
dense network (DRDN), which can effectively utilize feature infor-
mation in and between the layers by connecting dense blocks (DB)
to deepen the network. The main contributions of our paper are as
follows:

1. Residual dense connection. Dense connection can make full
use of local hierarchical information and provide more hierar-
chical feature information for final reconstruction. At the same
time, the residual learning of each dense connected network
block through the skip connection can alleviate the problems
such as the training difficulty when deepening the network.

2. Fusion reconstruction. When deepening the network, the
intermediate reconstruction results of eachDB can be obtained
by introducing residual skip connection to each DB, and the
intermediate results of eachDBcanbe fused and reconstructed,
so as to obtain the final reconstruction results. At the same
time, Multi-hop connection can make errors spread to each
layer of the networkmore quickly, which can alleviate the prob-
lem of difficult training caused by deepening the network.

2. DRDN

Based on the comparison with DRCN and DRRN, this section
first introduces the network structure of DRDN, and then analyzes

the local feature fusion approach and the global residual fusion
reconstruction approach in detail. In the analysis, we focus on the
improvement of DRDN compared with DRCN andDRRN andwhy
DRDN is superior to them.

2.1. Architecture of DRDN

Different from the cascade convolutional layer unit in DRCN and
DRRN, DRDN adopts DB [17] (shown in Figure 1) as the basic
block of network architecture. DRDN combines the ways of deep-
ening the network inDRCNandDRRN, and connects each block in
the same way through identical skip connection. Then after adding
each basic block and identity connection, the outputs are taken as
the intermediate results in reconstruction. Finally, all intermediate
results are fused through the reconstruction layer (convolution ker-
nel is 1 × 1) to obtain HR reconstructed images. The network struc-
ture of DRCN, DRRN, and DRDN is shown in Figure 2.

DRDN mainly consists of three parts: shallow feature extraction,
residual-dense network, and fusion reconstruction network. In the
part of shallow feature extraction, two convolution layers with the
convolution kernel size of 3 × 3 and 1 × 1 respectively are used to
extract shallow features. Specifically, we use a multiple dense con-
nected convolution layer (the convolution kernel is 3 × 3) and a fea-
ture contraction layer with the convolution kernel size of 1 × 1 as the
basic block (also called DB) of the network. For residual learning,
an identical skip connection is introduced between eachDB and the
shallow feature extraction layer. Multiple DBs are connected in the
same way to deepen the network continuously. In the fusion recon-
struction network, the results of each residual-DB are taken as inter-
mediate results, and the final reconstruction results are obtained by
weighting and summing these intermediate results.

2.2. Local Feature Fusion

In the reconstruction, we expect to make use of more LR image
information, which needs the network reach a certain depth to
obtain better reconstruction effects. When deepening the network,
instead of taking two ordinary convolutional layers as the basic
network block in DRRN, densely connected convolutional network
is taken as the basic block in DRDN, as shown in Figure 3. In
Figure 3, f0 (LR) and f ′0 (LR) represent the outputs of the shallow
feature extraction layers in DRRN and DRDN respectively. Ui and
U′

i represent the outputs of the ith blocks in DRRN and DRDN

Figure 1 Dense Block (DB).
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Figure 2 The diagram of network architecture.

Figure 3 Simplified net architecture of deep recursive residual network (DRRN) and deep residual dense network (DRDN).
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respectively. Hi () and H′
i () represent the input–output function

relationships of the ith blocks in DRRN and DRDN respectively.

DBs are connected by multi-layer densely connected convolution
layer and convolution layer with kernel size of 1 × 1, so that the DB
can make full use of the feature information of each convolutional
layer. Then, the intermediate result can be obtained via a convolu-
tion kernel with size of 1 × 1 from the feature information of the
convolutional layer. Similar to DRRN, both the outputs of the above
block in DRDN and the shallow feature are used as the inputs of the
next block. The formula is expressed as:

U ′
i+1 = H ′

i+1
(
f ′0 (LR) + U ′

i
)

(1)

In addition, for the diversity of feature information, different from
DRRN adopting block weight sharing, DRDN trains the weight
parameters in each block independently.

2.3. Global Residual Fusion Reconstruction

As shown in Figure 3, in DRRN, only the output of the last residual
block is directly used to reconstruct the HR image, and the formula
is expressed as:

HR = Rec
(
Ulast + f0 (LR)

)
(2)

where LR and HR represent the input LR image and the recon-
structed HR image respectively. Rec () is the output function of the
last convolutional layer. In DRDN, by introducing identity connec-
tion between the shallow feature extraction layer and each block,
the outputs of each DB and the shallow feature extraction layer can
be added to obtain an intermediate reconstruction result. All inter-
mediate results are taken as inputs of the final fusion reconstruction
layer, and the final fusion reconstruction layer is a convolution layer
with kernel size of 1 × 1, which is equivalent to weighted sum of all
intermediate results.

HR =
n

∑
i=1

wi
(
U ′

i + f ′0 (LR)
)

(3)

where n is number of the blocks in the entire network, and wi
is the corresponding weight which obtained by training. Through
the introduction of multi-path identical skip connection, the inter-
mediate reconstruction results are fused to obtain the final result,
which is the fusion and utilization of the global feature information
of the deep network. In this way, local and global hierarchical fea-
ture information can be fully utilized in network reconstruction.

At the same time, by these skip connections, the error in the deeper
layer can be propagated to the shadow convolution layer faster and
more directly. As shown in Figure 3, the dashed lines indicate the
error backward propagation path. In DRRN, it can be seen that the
reconstruction error needs to pass through all the blocks to reach
the previous block. This is the main reason for gradient vanish-
ing problem in deep networks. However, for DRDN, the identical
skip connection can make the reconstruction error directly propa-
gated to these blocks, which can alleviate the problems of gradient
vanishing to a certain extent and accelerate the training. By using
residual learning between DBs, the whole network can simultane-
ously complete local hierarchical features fusion and global features
fusion, both of which provide rich hierarchical features information
for final reconstruction.

3. EXPERIMENTS AND RESULTS ANALYSIS

3.1. Training

As in VDSR [13] and DRRN [15], MSE is taken as the loss function
in training. Given a train set {xi, yi}

N
i=1, the specific expression of

loss function is:

L (Θ) = 1
2N

N

∑
i=1

‖yi –HR (xi) ‖2 (4)

where N is the number of training patches, xi is the ith LR image,
yi is the corresponding HR label image,Θ represents the parameter
sets, and HR (xi) represents the reconstructed image. The method
proposed in Reference [23] is used to initialize the network param-
eters and optimize the loss function. The training is based on Caffe
framework, and the mini-batch size is 64. The initial value of learn-
ing rate is 0.0001, which is reduced to half of the previous after
200,000 iterations.

3.2. Experiments Settings

As in VDSR, DRCN, and DRRN, the experiments also use the same
data set containing 291 images [13–15] as the training data set,
Set14, Urban100, BSD100, and other commonly public data sets
are adopted as the test data set. Some graphic examples of the train
dataset are shown in Figure 4.

In the stage of data preparation, the training data is artificially
expanded by rotating and flipping the 291 images in 4 directions
respectively, as shown in Figure 5(a). Data preprocessing is required
before training, and the specific operation is as follows:

1. The RGB images are converted into YCbCr images, and only
Y-channel is used for training and testing, as well as in SRCNN
[10], DRCN [14], and DRRN [15].

2. Scale transformation and degradation processing are carried
out on the images obtained in step (1) to obtain the LR images
and the corresponding tag images with different magnification
multiples (×2, ×3, ×4), as shown in Figure 5(b).

3. The images obtained in step (2) are cropped into image blocks
with a size of 40 × 40 for network training, which is shown
in Figure 5(c). These LR images with different magnification
scales and label image pairs are used to train the same network
model, so that the networkmodel is suitable for reconstruction
with different magnification scales.

So, the dataset containing 291 images is rotated and flipped to
291 × 8 = 2328 images. Among them, 2164 are training images and
164 are test images. After the processing in step (2), we can get
2164 × 3 = 6492 training images and 492 test images. After the
tailoring in step (3), we can get about 648,000 image patches for
training.

The specific operations of image reconstruction are as follows:

1. The size of the LR image is adjusted to 320 × 240, and then it is
cut to 40 × 40 image patches.
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Figure 4 Examples of train data sets.

Figure 5 (a) Training data expansion diagram, (b) Low-resolution image (left)
and high-resolution image (right), and (c) Low resolution image patches (40 × 40)
and label image patches (40 × 40).
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2. DRDN is used to reconstruct image patches, and the recon-
structed image patches are spliced according to the original
locations to get the reconstructed HR images.

For experimental comparison, we trained the two networks (DRRN
and DRDN) in the same hardware and software environment.
The specific hardware and software environment configuration are
shown in Table 1. Specially, when training DRRN, we carried out
the training completely according to the network structure and
parameter settings in Reference [15].

Table 1 Experimental environment configuration.

Configuration Parameter

OS Ubuntu 16.04
CPU Intel i7 3.30GHz
GPU GTX1080Ti (11G)
RAM 16G/DDR3/2.10GHz
cuDNN CuDNN 7.0
CUDA CUDA9.0
Frame Caffe

Table 2 Network parameters and reconstruction time.

DRRN DRDN

Network layers 52 50
Convolution kernels size 51 (3 × 3) + 1 (1 × 1) 49 (3 × 3) + 1 (1 × 1)
Reconstruction time
(Set14)

3.942 s 2.824 s

DRDN = deep residual dense network; DRRN = deep recursive residual network.

3.3. Experiments Analysis

1. Comparison of network parameters and reconstruction
time
Table 2 shows the comparison of the two network parameters.
DRRN deepens the network to 52 layers by introducing recur-
sive units, and ours DRDN makes the network depth reach 50
layers by stacking multiple DBs. Meanwhile, the size of convo-
lution kernel of each layer in the two networks is mainly 3 × 3.
Under the same hardware and software environment, the aver-
age reconstruction time of the two networks on Set14 is as fol-
lows: DRRN takes 3.942s andDRDN takes 2.824s. This reflects
that DRDN has less computing cost compared with DRRN.

2. Network robustness and convergence speed
Through repeated training of DRRN and DRDN, we find that
under the same training environment, the training of DRRN is
unstable, and often difficult to converge. There is only about
one successfully converge among 4 times training. By contrast,
DRDN can ensure good training stability and successfully con-
verge among 4 training. Figure 6 shows the curves of peak sig-
nal to noise ratio (PSNR) with different iterations onUrban100
and BSD100 datasets. It can be clearly found that DRDN has
a significantly faster convergence rate than that of DRRN.
DRDN tends to converge after about 200,000 iterations, while
DRRN gradually converges after about 400,000 iterations. This
fully demonstrates that the introduction of multi-path recon-
struction of DRDNwith skip connection is conducive to accel-
erating network convergence. In addition, the experimental

Figure 6 (a) The curves of peak signal to noise ratio (PSNR) values
and iterations on Urban100, and (b) the curves of PSNR values and
iterations on BSD100.
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results also show that DRDN achieves better reconstruction
effects.

3. Fusion reconstruction
Figure 7 shows the intermediate results obtained by each
residual-DB, and the finalHR image is obtained through fusion
reconstruction. In Figure 7, the above images from left to
right are 5 intermediate results, obtained from the 1–5 residue-
intensive blocks, which named result_1- result_5, respectively.
As can be seen from the figure, the result_1 obtained by the
first residue-intensive block at the lower level is still fuzzy.With
the stacking of network blocks, the feature information is more
abundant, and the intermediate result obtained by the residual-
DB at the deeper level is clearer. In the end, the residual-DBs
of different depths can improve the feature information of dif-
ferent levels for reconstruction, so that the final reconstructed
image has clearer and richer information.

4. Visual effect comparison of reconstructed images
Figure 8 shows the reconstructed images of VDSR, DRRN, and
DRDN. Their PSNRs are shown in Table 3. In Figure 8, there
are 3 test images. The images from left to right are the LR image,
the reconstruction result of VDSR, the reconstruction result of
DRRN, and the reconstruction result of DRDN, respectively.
Because the LR image in Figure 8(b) contains more image
details and textures, the results in Figure 8(b) reconstructed
by 3 methods are better than those in Figure 8(a) and 8(c).
Compared with other methods, DRDN achieves the best
reconstruction effect, both in visual effect and PSNR value.
This indicates that the rich feature information extracted by
DNDN is helpful to improve the reconstruction effect.
Figure 9 shows detail parts corresponding to the images of
Figure 8. It can be seen from the figure that the edge details of
the reconstructed image obtained byDRDN are clearer and the
lines are smoother.

In addition to the above experiments, we also test different
approaches under our own experimental conditions, including
SRCNN [10], FSRCNN [19], DRCN [14], LapSRN [20], DRRN
[15], CARN [21], FALSR [22], andDRDN.The experimental results
are shown in Table 4. PSNR is the average value of 200,000 itera-
tions after the network is stable. The data sets used in the experi-
ment are BSD100 and Urban100. As can be seen from Table 4, our
method has achieved better results compared with other methods.
On BSD100, the effect of DRDN is a little worse than that of FALSR,
but better than those of other methods.

4. CONCLUSIONS

In this paper, a new network structure named DRDN is proposed
for image super-resolution. In DRDN, dense connection can make
full use of local hierarchical information and provide more hierar-
chical feature information. Each DB can get an intermediate result,
and the final reconstructed image can be obtained byweighted sum-
mation of all intermediate results. Reconstruction is the full fusion
and direct utilization of the network’s global hierarchical feature
information. Furthermore, Multi-hop connection can make error
spread to each layer of the network more quickly, which can alle-
viate the problem of difficult training caused by deep network to a
certain extent. The experimental results show that both the recon-
struction visual effect and PSNR of DRDN are better than those of
CDSR and DRRN, and the details are clearer. Compared with the
other 7methods in Table 4, ourDRDNapproach also achieves good
reconstruction results.

In the experiments, we found that different hardware/software and
training methods have great impacts on the experimental results.
Therefore, our future research is mainly about the adaptability of
themethods to the environment and the further optimization of the
network structure.

Figure 7 Fusion reconstruction result.
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Figure 8 Visualization of reconstruction results.

Table 3 PSNR of the reconstructed images.

VDSR DRRN DRDN

(a) 26.5500 25.8549 26.6885
(b) 31.3138 30.4452 31.6819
(c) 30.3441 30.3072 30.4184

DRDN = deep residual dense network; DRRN = deep recursive residual network; PSNR = peak signal to noise ratio.

Table 4 PSNR of different networks.

Approach Scale BSD100 Urban100

SRCNN [10] 4 21.12 20.13
FSRCNN [19] 4 21.14 20.21
DRCN [14] 4 22.23 21.08
LapSRN [20] 4 23.01 21.17
DRRN [15] 4 26.67 24.38
CARN [21] 4 26.72 24.52
FALSR [22] 4 26.86 24.55
DRDN(ours) 4 26.92 24.53
CARN = cascading residual network; DRDN = deep residual dense network; DRRN = deep recursive residual network;
FALSR = fast, accurate and lightweight super-resolution; LapSRN = Laplacian Pyramid Super-Resolution Network; PSNR =
peak signal to noise ratio.
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Figure 9 Details corresponding to the images in Figure 8.
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