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ABSTRACT
To date, the subgroup discovery (SD) task has been considered in problems where a target variable is unequivocally described by
a set of features, also known as instance. Nowadays, however, with the increasing interest in data storage, new data structures are
being provided such as the multiple instance data in which a target variable value is ambiguously defined by a set of instances.
Most of the proposals related to multiple instance data are based on predictive tasks and no supervised descriptive analysis
can be provided when data is organized in this way. At this point, the aim of this work is to extend the SD task to cope with
this type of data. SD is a really interesting task that aims at discovering interesting relationships between different features with
respect to a specific target variable that is of interest for the user or the problem under study. In this regard, this paper presents
three different approaches formining interesting subgroups inmultiple instance problems. The proposedmodels represent three
different ways of tackling the problem and they are based on three well-known algorithms in the SD field: SD-Map (exhaustive
search approach), CGBA-SD (Comprehensible Grammar-Based Algorithm for Subgroup Discovery) and NMEEF-SD (multi-
objective evolutionary fuzzy system). The proposals have been tested on a wide set of datasets, including 10 real-world and 20
synthetic datasets, aiming at describing how the three methodologies behave on different scenarios. Any comparison is unfair
since they are completely different methodologies.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Data mining, which is defined as the process of discovering use-
ful information usually hidden in data, is generally divided into
two main tasks: predictive and descriptive. The former includes
techniques that predict a target variable (object or event) by an
instance represented as a vector of features. Descriptive tasks, on
the contrary, do not consider any target variable and they aim at
finding useful insights (generally in terms of co-occurrences) from
the set of features [1]. Until recently, these techniques have been
researched by two different communities: predictive tasks princi-
pally by the machine learning community, and descriptive tasks
mainly by the data mining community. In some specific fields,
however, it is required that both tasks converge at some point,
which has given rise to the concept of supervised descriptive pat-
tern mining [2]. The main aim now is to understand an underly-
ing phenomena (according to a target variable) and not to classify
new examples. Among existing techniques for mining supervised
descriptive patterns, subgroup discovery [3] (SD) is, by large, the
most well-known. It aims at identifying a set of features (patterns) of
interest according to their distributional unusualness with respect
to a certain property of interest (target variable). In other words,
SD describes data subsets for a given target variable by means of
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independent and simple rules unlike predictive learning that
explains future behavior through complex models.

SD has been used in a wide range of problems [2] in which the tar-
get variable is unequivocally defined by an instance, that is, a vec-
tor of features. In some other problems, however, data is organized
as a bag of instances all somehow related (e.g., because all are due
to the same hidden cause or factor) and there is a target variable
for each bag of instances and not for each single instance [4]. As a
matter of clarification, let us consider data gathered from a super-
market in which wewant to obtain insights that describe customers’
purchasing habits based on the type of customers (target variable).
Theremay be occasional and common customers and their number
of transactions (instances) is therefore dissimilar. Describing data
subsets for a given target variable (the type of customer) by means
of independent and simple rules that denote some distributional
unusualness on that problem cannot be performed by a traditional
SD task. Instead, SD is required to be analyzed as a multiple-
instance (MI) problem where the aim is to learn from a set of
feature vectors where each of these sets has an associated outcome
or target variable.

The MI problem [5] has been generally associated with predic-
tive tasks, which is known as multiple instance learning (MIL).
MIL has been widely studied and there exist a taxonomy of
MIL methods [6]. First, instance-based methods are based on
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instance-level information in the sense that the learning process
considers the characteristics of individual instances without look-
ing at more global characteristics of the whole bag. Second, bag-
based methods take into account the global bag-level information
since the discriminative decision is taken by looking at the whole
bag instead of aggregating local instance-level decisions. Finally,
embeddedmethods consider each bag to be mapped to a single fea-
ture vector which summarizes the relevant information about the
whole bag. In some recent studies, however, it was demonstrated
that the MI problem is not a matter of predictive tasks but it is also
of high interest for descriptive analyses. In a descriptive task there is
no target variable associated and instances within a bag are related
due to a specific factor, for example, multiple purchases of the same
customer in a market basket analysis. In such descriptive analysis,
theMI problem cannot be addressed neither through bag-based nor
embedded methods. Instead, instances are important in isolation
and should be analyzed one by one for each bag.

Taking all these points into account and considering the importance
ofMI problems, the aim of this paper is to extend the SD problem to
cope withMI data. In this regard, this paper presents three different
SD approaches for mining interesting subgroups in MI problems.
The proposed models are based on three well-known algorithms
in the SD field and following completely different methodologies:
1) SD-Map [7] is an exhaustive search approach based on the well-
known and efficient FP-Growth algorithm [8]; 2) CGBA-SD [9]
is an evolutionary algorithm based on grammar-guided genetic
programming; and 3) Non-dominated Multi-objective Evolution-
ary algorithm for Extracting Fuzzy rules in Subgroup Discovery
(NMEEF-SD) [10] is an evolutionary fuzzy system that is based on
the well-known multi-objective NSGA-II [11] approach. The pro-
posed algorithms represent three different ways of tackling the SD
problem so they are required to be analyzed on different scenarios,
including either real-world and synthetic datasets. It is important to
remark that any comparison is unfair since the methodologies have
different aims (SD-Map obtains any existing solution, CGBA-SD
extracts the best solutions found through an evolutionary algorithm
and NMEEF-SD discovers those solutions that belong to the pareto
front optimizing two quality measures at time). In the experimen-
tal stage, a supervised descriptive analysis has been first applied to
10 real MI problems such as drug activity and content-based image
retrieval among others. Second, an experimental analysis on 20 syn-
thetics datasets has been carried out in order to test the perfor-
mance of the algorithms on datasets with different features. Again,
it should be highlighted that the intention of this experimental anal-
ysis is not to compare the results of the algorithms for specific data
but to provide an overview on the usefulness of this new problem
formulation by considering three different methodologies.

The paper is structured as follows: Section 2 includes some formal
definitions for SD and MIL. Additionally, this section includes the
contribution of this work. Section 3 describes the three proposals.
Section 4 describes the datasets used in the experimental stage, the
algorithms’ set-up and a discussion of the obtained results. Finally,
in Section 5, some concluding remarks are outlined.

2. PRELIMINARIES

In this section the most important concepts as well as formal defi-
nitions related to SD and MI learning are provided. Finally, the key
points about the contribution of this work are outlined.

2.1. Subgroup Discovery

SD is a descriptive data mining technique grouped into the SDSR
(Supervised Descriptive Rule Discovery) concept [12], which also
includes other interesting tasks [2] such as contrast set mining
and emerging pattern mining. The idea of SD was introduced by
Kloesgen [13] and Wrobel [14], and it was formally defined by
authors as:

In subgroup discovery, we assume we are given a so-called popula-
tion of individuals (objects, customers, etc.) and a property of those
individuals we are interested in. The task of subgroup discovery is
then to discover the subgroups of the population that are statistically
“most interesting”, i.e., they are as large as possible and have the most
unusual statistical (distributional) characteristics with respect to the
property of interest.

The aim of SD is the search for relations between different proper-
ties or variables of a set with respect to a target variable [15]. In SD,
the ultimate aim is to describe and understand the underlying phe-
nomena with respect to an interest property. An illustrative exam-
ple allows to understand it easily:

Amedical center wants to know in what circumstances a patient may
suffer a type of cancer, the intention is not to predict cancer, but to
describe the risk factors that lead to this.

The representation of the knowledge plays an important role to
correctly describe the phenomena under study, and this descrip-
tive analysis is carried out by individual rules that denote relations
between variables, that is, rules [1] in the form:

R :Cond → Targetvalue.

where Targetvalue stands for a value of the variable of interest—
this target variable also appears as Class in the SD literature. Addi-
tionally, Cond is commonly defined as a conjunction of features
(attribute-value pairs) which are able to describe an unusual statis-
tical distribution with respect to Targetvalue.

SD uses descriptive induction through supervised learning which
is widely used in classification. However, SD is differentiated with
respect to classification techniques because it attempts to describe
knowledge by data while a classifier attempts to predict the tar-
get value for new data to incorporate in the model. Furthermore,
SD does not obtain a precise and complex model which perfectly
divides the space into a determined regions. Instead, a SD algorithm
obtains sets of independent rules that describe each value of the tar-
get variable and should satisfy the following properties [16]:

• Interpretable. The number of rules and the complexity of these
rules (with respect to the number of variables) must be easily
interpretable by experts, that is, a low number of rules with few
variables is desirable.

• Novelty. Rules must be statistically interesting so they should
describe an unusual statistical distribution with respect to the
Targetvalue.

• Trade-off generality-precision. SD is required to obtain results
with a good precision (where the majority examples covered by
the rule belong to the specific target variable) and covering the
major number of examples.
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A key element in the SD task is the right choice of measures that
quantify the importance of the extracted knowledge. A wide set of
quality measures has been proposed in literature and there is no
current consensus about which are the most suitable ones. Con-
sidering the three main properties previously presented, the most
appropriate quality measures are the following:

• Number of rules obtained for the model. Any SD approach
must obtain a set of simple and interpretable rules for the
problem under study. In many situations, though, the obtained
subgroups are not interesting at all so not all the values of the
target variable are covered.

• Number of variables. It is measured as the number of conditions
within the rule. The number of variables for a set of rules is
computed as the average number of the variables for each rule
of that set.

• Unusualness is the weighted relative accuracy of a rule [17]
which measures interest and a trade-off between generality and
precision. It is computed as:

Unus (R) =
n (Cond)

ns
⋅
(
n
(
Targetvalue ⋅ Cond

)
n (Cond)

–
n
(
Targetvalue

)
ns

) (1)

Unusualness can be described as the balance between the
coverage of the rule and its accuracy gain, where n (Cond) is the
number of examples which satisfy the conditions determined
by the antecedent part of the rule, ns defines the number of
total examples, n

(
Targetvalue ⋅ Cond

)
states for the number of

examples that satisfy the conditions and also belong to the value
for the target variable within the rule and, finally, n

(
Targetvalue

)
stands for the number of examples of the target variable. The
minimum and maximum value for this very quality measure is
specified for each problem since there is a direct dependence
with respect to the target variable. In this way, it is necessary to
normalize it for each value of the target variable [18] in the
interval [0, 1]. In this way, all rules with values higher than 0.5
obtain a positive unusualness and negative in another case.

• Sensitivity is the proportion of actual matches that have been
correctly classified [13] and it has a component based on
generality. This quality measures can be found in the literature
as the Support based on the examples of the class, Recall or
TPrate, and its domain is [0, 1]. Sensitivity quality measure is
computed as:

Sens (R) =
n
(
Targetvalue ⋅ Cond

)
n
(
Targetvalue

) (2)

• Confidence determines how reliable the rule is, that is, it
quantifies the relative frequency of examples satisfying the
complete rule among those satisfying only the antecedent [19].
This quality measure takes values in the range [0, 1] and it can
be modified for fuzzy rules as described in [10]. Confidence is
formally defined as:

Conf (R) =
n
(
Targetvalue ⋅ Cond

)
n (Cond)

(3)

The applicability of SD to real-world problems can be observed
throughout the literature widely. For example, in [20,21] descrip-
tions in bioinformatic domains are performed, in medicine [22], in
industry [23], or e-learning [24] among others [25].

2.2. Multiple Instance Learning

In traditional supervised learning each object to be learned is
unequivocally described by a feature vector that is associated to an
outcome or target variable (see Figure 1(a)). In MIL [5], however,
the data structure is more complex and each object or target vari-
able is ambiguously defined by an undetermined number of feature
vectors (multiple instances in the MIL jargon) that are related due
to the same hidden cause (see Figure 1(b)). According to a recent
review [6], each bag (set of instances) has an associated target vari-
able value, but we do not know the target variable values of the
individual instances that conform the bag. In its formal definition,
let us assume a dataset Ω comprising a set of instances  ∈ Ω
such as  = {i1, i2, ... in}, and each single instance ij ∈  is rep-
resented by a distinct feature vector V

(
ij
)
. In MIL, the dataset Ω

comprises a set of bags 𝔅 = {b1, b2, ...bm} ∈ Ω, and a particular
bag bj is defined as an unordered set of instances bj ⊆  from Ω.
Thus, the bag bj = {ik, ..., il} is represented by a set of feature vec-
tors bj = {V

(
ij,k

)
, ...,V

(
ij,l
)
}. Finally, as previously described, each

single bag bj has an associated outcome oj, that is, {bj, oj}. This out-
come oj is related to the bag bj and not to every instance or feature
vector within bj.

In a recent overview [6], existing MIL methods were grouped into
a small set of compact paradigms (instance-space, bag-space and
embedded-space) according to how they manage the information
from the MI data. Beginning with the instance-space paradigm,
the discriminative information is considered to lie at the instance-
level (only characteristics of individual instances are considered)
so a discriminative instance-level classifier is trained to separate
the instances in positive bags from those in negative ones. Thus,
once a new bag is obtained, it is classified according to the aggrega-
tion of instance-level scores. The instance-space paradigm consid-
ers two different methods, that is, the ones following the standard
MI assumption and the ones following the collective assumption.
The standardMI assumption, stated byDietterich et al. [26], defines
a positive result if and only if at least one of the instances within a
bag produces a positive result. On the contrary, a negative result is
provided if all the instances within a bag produce a negative result.

Figure 1 Predictive task where each object is: (a)
unequivocally described by a feature vector; (b) ambiguously
described by an undetermined number of feature vectors.
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As for the collective assumption, Weidmann et al. [27] determined
a bag as positive if and only if at least a certain number of instances
in such bag produce a positive outcome. This assumption is known
as the threshold-based MIL assumption. An additional assumption
(count-based assumption) was also defined by considering a mini-
mum and a maximum number of instances required to be positive
in order to consider the bag as positive.

Focusing on the bag-space paradigm [6], the discriminative infor-
mation is considered to lie at the bag-level. In this paradigm each
bag is treated as a whole entity, and the learning process discrim-
inates between entire bags. It is considered that this paradigm is
based on bag-level information since the discriminative decision
is taken by looking at the whole bag. In this regard, some meth-
ods have defined a distance function to compare two bags and used
such distance function in a distance-based classifier such as K-NN
or SVM. Finally, the third type of paradigm defined in [6] is related
to an embedded-space is also based on extracting global informa-
tion about the bag. To do that, each bag is associated to a feature
vector that summarizes the characteristics of the whole bag. Thus,
the two last paradigms (bag-space and embedded-space) are based
on extracting global information about the bags. The main differ-
ence among them is based on the way bags aremeasured to be com-
pared, that is, implicitly through a distance function (bag-space) or
explicitly through a summarized feature vector (embedded-space).

2.3. Contribution

SD has been used in a wide range of problems in which the target
variable is unequivocally defined by an instance, that is, a vector of
features. Nowadays, with the increasing interest in data storage, data
is organized in multiple forms and one of the most well-known is
in bags of instances that are somehow related due to the same hid-
den (or known) cause. In this data representation, called MI data,
a target variable is associated to each bag of instances and not to
each single instance. This type of data has been generally consid-
ered through predictive tasks in which the target variable associated
to each bag (set of instances) is predicted. This data representation,
however, has not been considered from a descriptive point of view
which is also of high interest due to its ability to provide useful and
unusual features associated to each target variable value through
independent and simple rules.

Taking into account the importance ofMI problems, the aim of this
paper is to extend the SD problem to cope with MI data. In this
regard, this paper presents different SD approaches for mining and
describing interesting subgroups in MI problems. The approaches
are based on three well-known SD algorithms considering differ-
ent methodologies. Thus, we have considered the most well-known
exhaustive search SD approach, that is, the SD-Map algorithm
based on a really efficient pattern mining algorithm such as FP-
Growth. Two additional SD approaches based on non-exhaustive
search methodologies are also considered. One is based on multi-
objective evolutionary fuzzy systems, that is, NMEEF-SD, whereas
CGBA-SD, the other one, is based on grammar-guided genetic pro-
gramming. Finally, it is important to remark that the MI problem
was addressed by considering the instance-space paradigm since
the other two paradigms transform the MI problem into a single
instance one and, therefore, it is not useful from a descriptive point
of view.

3. PROPOSALS

Most of the existing algorithms for SD are focused on binary
or nominal target attributes, for which heuristic [28] as well as
exhaustive search methods [3] are applied. Focusing on heuristic
approaches, the way in which these approaches deal with features
that are defined in a continuous domain has been of great inter-
est for many researchers. In this regard, different fuzzy systems
have been proposed for the SD problem from which NMEEF-SD
has been demonstrated to be the most promising one according
to the statistical analysis carried out in [10]. Additionally, the use
of grammars to encode solutions on continuous domains to pro-
vide expressive and flexible solutions has also been considered for
the SD problem. In this sense, the CGBA-SD algorithm has been
proved to perform statistically better than the existing algorithms
as it is demonstrated in [9]. It should highlight that most heuris-
tic approaches are often preferable due to exhaustive search meth-
ods take long time to explore the complete search space in certain
domains. The use of evolutionary algorithms for SD is very well
suited because these algorithms perform a global search in the space
as it is demonstrated [28]. However, due to efficient pruning tech-
niques, many exhaustive search approaches can achieve sufficiently
good runtimes even in complex domains. In this sense, SD-Map [7]
is the most well-known exhaustive search algorithm for SD since it
is a really promising option for efficiently mining large datasets.

According to the aforementioned description, three promising
algorithms (SD-Map, CGBA-SD and NMEEF-SD) that follow dif-
ferent methodologies in the SD field have been taken as baseline.
These three approaches have been accordingly adapted to the MI
problem by considering the instance-space paradigm, which is the
one that best fits to the SD problem, as follows:

• SD-Map-MI is based on the SD-Map algorithm [7], an
exhaustive search algorithm that uses the well-known
FP-Growth method [8] adapted for the SD task. It is important
to highlight that this method can not work with numeric
variables, so it makes necessary a previous discretization phase.
The algorithm performs a first scan of the dataset in order to
prune those features with a support lower than a threshold.
Then, it sorts the features according to the support in order to
put features with higher values closer to the root. After that, the
algorithm performs a depth-first search where the subgroups
are evaluated directly, without referring to other intermediate
results. After the processing of the subgroups, the algorithm
can obtain the best k rules or those rules with a quality measure
greater than a threshold. It can use several quality measures
such as Piatetsky-Shapiro [13], unusualness (Eq. 1) or the
binomial test [13] among others. The MIL adaptation has been
performed on the first phase of the method, where the counts
of the features are collected in order to prune the low-support
ones. As the algorithm works with bags instead of instances,
the standard assumption for MIL is performed: the counts of
the features are increased only once per bag, for example, if a
feature F1 appears three times in the bag, the counts of the
feature F1 are increased only once.

The main motivation for considering this algorithm is the
capability to extract any feasible solution since it is an
exhaustive search approach. Additionally, SD-Map is based on
FP-Growth that is one of the most promising, in terms of
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runtime, algorithms for mining frequent patterns. Thus,
SD-Map not only is able to extract any feasible solution in data
but it also achieves an incredibly good performance. In general
terms, the main advantage of using SD-Map is that it analyzes
the whole search space and, therefore, the obtained solutions
are really the best ones. Nevertheless, two main downsides
should be taken into account when using SD-Map. First, it only
copes with discrete values so data defined in a continuous
domain needs to be discretized beforehand, assuming a loss of
information. Second, it requires large amount of memory when
extremely large datasets are analyzed so real-world datasets are
hardly analyzed (a search space restriction is required).

• CGBA-SD-MI based on the CGBA-SD algorithm [9] which is
an evolutionary algorithm that uses a genetic programming
approach [28] combined with the use of a context-free
grammar in order to obtain comprehensive rules. The use of
grammars provides expressibility, flexibility and the ability to
restrict the search space. CGBA-SD is within the “chromosome
= rule” approach where an individual is represented by means
of a tree structure which can represent nominal variables and
continuous ones by means of random intervals, which are
optimized in a post-processing phase. The algorithm uses an
initialization procedure where individuals generated have a
fitness over zero always. The fitness function is the product of
the support and confidence of the individual. The genetic
operators used can automatically change their probability of
application depending on whether is necessary more diversity
or not. The final population keeps those individuals with a
confidence greater than a threshold and equivalence between
individuals. The adaptation to the MI problem has been
performed on the evaluation phase, where the count of the
features that form an individual is calculated. Here, the
standard assumption is considered, that is, the counts of the
features are increased only once per bag, for example, if a
feature F1 appears three times in the bag, the counts of the
feature F1 are increased only once.

The main motivation for considering this algorithm is its
capability to extract solutions in any domain (continuous and
discrete) and with an almost constant runtime. This algorithm
[9] was already compared to multiple SD algorithms obtaining
the best results, specially when considering evolutionary
computation solutions. In general terms, the main advantage of
using CGBA-SD is its ability to cope with data defined in
continuous domains so no discretization step is required.
Another important advantage of CGBA-SD is the use of a
context-free grammar to encode solutions so the end user is
able to describe beforehand the shape of the solutions to be
obtained. Nevertheless, the main drawback of this algorithm is
its inability to analyze the whole search space and, therefore,
some promising solutions might be skipped.

• NMEEF-SD-MI is based on the NMEEF-SD [10] which is an
evolutionary fuzzy system based on a multi-objective
algorithm called NSGA-II [11]. This algorithm encodes the
solutions according to the “chromosome = rule” approach,
where only the antecedent is represented in the chromosome
and the consequent is prefixed to one of the possible values of
the target variable in the evolution. In this way the algorithm is
executed as many times as the number of values for the target

variable it contains. The algorithm employs different genetic
operators in order to promote generality and diversity within
the population and to obtain interesting subgroups for the SD
technique. It is very important to highlight the use of the
multi-objective approach because it allows the experts the
possibility to use different quality measures as objectives. In
this way the final Pareto front obtained by NMEEF-SD is the
set of non-dominated solutions with respect to the quality
measures considered. As can be observed in [10] the best
results for this algorithm are obtained with the use of the
quality measures unusualness and sensitivity. Finally, a
screening function is performed at the end of the evolutionary
process in order to return only those solutions which reach a
pre-determined confidence threshold. The adaptation of this
algorithm to the MI problem is, similarly to the other three
approaches, based on the standard assumption in order to
calculate the quality measures with respect to bags. Again, a
bag is considered as covered by an individual if at least one of
its instances is covered by the individual.

The main motivation for considering this algorithm is the
possibility of addressing the SD problem by means of a multi-
objective evolutionary fuzzy system such as NMEEF-SD, which
is one of the most well-known algorithms in the SD literature.
The main advantage of this algorithm is its ability to provide the
experts with the possibility to use different quality measures as
objectives, in such a way that final solutions are those included
in the set of non-dominated solutions with respect to the
considered quality measures. Additionally, NMEEF-SD-MIL is
able to obtain a diverse and interesting set of rules without
requiring a pre-processing step of transforming continuous
features into discrete ones. Finally, a major drawback of this
algorithm is its inability to analyze the whole search space and,
therefore, some promising solutions might be skipped.

According to the SD definition, themain objective is to describe the
underlying phenomena of a problem. Thus, the goal is to knowwhy
a positive (or a specific target value for non-binary problems)match
is produced. In this sense, the match may be produced according
to any of the defined assumptions. However, since many different
domains are considered here and the standard assumption has been
widely used on different scenarios, this very assumption has been
pre-defined. The final aim is to easily describe the underlying phe-
nomena with simple and interpretable rules that covers the major
number of bags. A trade-off between generality-precision and nov-
elty is achieved by the use of quality measures, such as unusualness,
sensitivity or confidence, on the mining phase as a constraint in
order to prune non-interesting rules.

4. EMPIRICAL STUDY

In this experimental study, we first describe the datasets consid-
ered in this experimental stage, including either widely-knownMIL
benchmarks and synthetic datasets. Finally, the results obtained by
each of the proposed algorithms are outlined. It should be high-
lighted that the intention of this experimental analysis is not to com-
pare the results of the algorithms for specific data but to provide
an overview on the usefulness of this new problem formulation by
considering three different methodologies.
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4.1. Experimental Setting

In this subsection, the application domains and the parameters’ set-
tings used in the algorithms are described.

4.1.1. Dataset domains

Two different studies have been performed in this contribution:

• Firstly, a varied set of 10 benchmarks that represent different
real-world applications inMIL are employed. For example, drug
activity consists of determining whether a drug molecule will
bind strongly to a target protein, whereas content-based image
retrieval aims at identifying target objects in images. Detailed
information about these problems can be observed in Table 1.

•  Secondly, 20 artificial datasets have been generated in order to
obtain a generalized study and to improve the analysis of this
study. These datasets include different properties (summarized
in Table 2) regarding the number of features, instances, bags and
instances per bags. In the generation of these datasets different
features have been considered: minimum and maximum
number of instances per bag; number of attributes; and number
of bags. Moreover, it is important to remark that all the
attributes or features are defined in continuous domain, taking
random values within the ranges [1, 5], [1, 10] and [1, 100].

All the datasets used in this study were partitioned using a 10-fold
stratified cross validation, which avoids the arbitrariness and the
dependence of the results with respect to the classical partitioning.
All the partitions obtained for each dataset are publicly available at
http://simidat.ujaen.es/papers/SD-MIL, so future comparisons can
be easily performed. Finally, it should be remarked that both bench-
mark and artificial datasets are composed by continuous features.
In this regard, due to some algorithms like SD-MAPcannotwork on
this type of datasets, a pre-processing discretization has been car-
ried out. Two different approaches (Fayyad [32] and Uniform Fre-
quency [33] in ten intervals) has been performed, and the quality
with respect to the best configuration was measured.

4.1.2. Set-up of the algorithms

The parameters used for the new SD proposals for MI are summa-
rized in Table 3. These parameters have been selected with respect
to the recommendations performed by the authors in their orig-
inal works. Additionally, the stochastic algorithms were run ten
executions for each partition, that is, an average value is obtained

from 100 values (10 partitions× 10 times) for each dataset. The val-
ues of number of rules, number of variables, unusualness, sensitivity
and confidence are computed as the average for all rules. It should
be highlighted again that SD-Map-MI andCGBA-SD-MIuse a crisp
confidence whereas the NMEEF-SD-MI employs the fuzzy confi-
dence. Both crisp confidence and fuzzy confidence are equivalent
so the same acronym was considered.

4.2. Results and Discussion

In this subsection, the results obtained for each algorithm and a
complete analysis about these results are presented. It is impor-
tant to note that the complete results for each algorithm are pub-
licly available at http://simidat.ujaen.es/papers/SD-MIL. Finally, it
is required to remark that the experimental study presented in this
contribution aims to show the validity of SD through different
approaches and MI problems, providing a good possibility to find
out new knowledge which could be interesting for the experts.

4.2.1. SD-Map-MI

Results obtained for the SD-Map-MI algorithm at the first and
second group of datasets are presented in Tables 4 and 5, respec-
tively. In a general way, SD-Map-MI has a poor behavior as can
be observed in the results obtained where results are not interest-
ing because they have a low quality and bad trade-off between sen-
sitivity and confidence. This problematic is related to the loss of
information for the previous discretization process applied into the
datasets (remember that this algorithm is unable to work with con-
tinuous data). Finally, it is also remarkable the large number of
rules per target variable value that SD-Map-MI obtains. In some
datasets, for example, EastWeast, SD-Map-MI is unable to extract
any subgroup due to there is no subgroup that satisfies the pre-
defined parameters (see Table 3) and the loss of information of the
discretization process.

4.2.2. CGBA-SD-MI

Tables 6 and 7 present the results obtained by CGBA-SD-MI for
the benchmark and artificial datasets, respectively. CGBA-SD-MI
has a good homogeneity in the study of the benchmarks as can
be observed in the average values obtained with good values of
unusualness and an excellent trade-off between sensitivity and con-
fidence. In general, the algorithm extracts precise rules with values

Table 1 Information about benchmarks.

Dataset Bags Attributes Instances Average Bag Size

EastWest [29] 20 24 213 10.65
Elephant [30] 200 233 1391 6.96
Fox [30] 200 233 1320 6.60
Musk1 [26] 92 166 476 5.17
Musk2 [26] 102 166 6598 64.69
Mutagenesis-Atoms [31] 188 10 1618 8.61
Mutagenesis-Bonds [31] 188 16 3995 21.25
Mutagenesis-Chains [31] 188 24 5349 28.45
Tiger [30] 200 233 1220 6.10
WestEast [29] 20 24 213 10.65
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Table 2 General information about the artificial datasets.

Dataset Bags Attributes Instances
Per Bag

Dataset Bags Attributes Instances
Per Bag

ds-01 400 10 [1, 8] ds-02 450 10 [1, 8]
ds-03 500 10 [1, 8] ds-04 500 6 [1, 4]
ds-05 450 6 [1, 4] ds-06 400 6 [1, 4]
ds-07 3000 8 [1, 5] ds-08 4000 7 [1, 5]
ds-09 5000 4 [1, 5] ds-10 3500 9 [1, 10]
ds-11 4500 5 [1, 10] ds-12 150 20 [1, 3]
ds-13 150 40 [1, 3] ds-14 200 15 [1, 3]
ds-15 400 35 [1, 3] ds-16 30 10 [1, 5]
ds-17 50 8 [1, 5] ds-18 70 6 [1, 5]
ds-19 90 10 [1, 5] ds-20 100 4 [1, 5]

Table 3 Parameters of the algorithms.

Algorithm Parameters

SD-Map-MI Minimum support = 0.1; Subgroup return = 3; Subgroup for each class
= True; Number maximum of selectors = 3; Quality function =
Unusualness

CGBA-SD-MI Minimum confidence = 0.7; Population size = 50; Number of
generations = 100

NMEEF-SD-MI Objective1 = Sensitivity; Objective2 = Unusualness; Linguistic labels = (3,
5 and 7); Minimum confidence = (0.6, 0.7, 0.8 and 0.9); Population
size = 50; Maximum evaluations = 10000; Crossover probability = 0.60;
Mutation probability = 0.10

Notes.MI = multiple instance; SD = subgroup discovery.

Table 4 Results obtained for the benchmarks by considering the SD-Map-MI algorithm.

Dataset Number of Rules Number of
Variables

Unusualness Sensitivity Confidence

EastWest 0.00 0.00 0.000 0.000 0.000
Elephant 6.00 3.00 0.400 0.050 0.250
Fox 6.00 2.50 0.325 0.100 0.257
Musk1 6.00 2.33 0.338 0.192 0.417
Musk2 6.00 2.67 0.500 0.139 0.500
Mutagenesis-atoms 6.00 2.67 0.164 0.000 0.000
Mutagenesis-bonds 6.00 2.83 0.321 0.000 0.000
Mutagenesis-chains 3.00 3.00 0.222 0.000 0.000
Tiger 6.00 3.00 0.267 0.117 0.140
WestEast 0.00 0.00 0.000 0.000 0.000
AVERAGE 4.50 2.20 0.254 0.060 0.156

Notes.MI = multiple instance; SD = subgroup discovery.

higher than 60% in sensitivity, denoting that the majority exam-
ples for the value of the target variable analyzed are covered. On
the other hand, the interpretability of this model is highlighted with
respect to the number of rules and variables extracted because it
obtains a low number of rules with few variables in the antecedent
which would allow to the expert an easy analysis of the problems.
With respect to the results obtained in the artificial datasets by
CGBA-SD-MI, similar conclusions as in the previous study can be
achieved. It obtains a good trade-off between sensitivity and confi-
dence with high values in both qualitymeasures. In unusualness the
algorithm also gets goods values, so the behavior of CGBA-SD-MI
is very homogeneous in the complete study. Moreover, it obtains
one rule for each value of the target variable with a low number of
variables, that is, all values for the target variable are represented
and rules are always between one and two variables instead of we
have even analyzd datasets with 40 variables. In this way, the algo-
rithm has a good interpretability. Finally, some examples of rules
extracted by CGBA-SD-MI on different real-world datasets can be

observed in Table 8. As shown, this algorithm is able to obtain rules
for each target value, and the rules obtained includes few variables
and, therefore, are really understandable for a user.

4.2.3. NMEEF-SD-MI

Results obtained by NMEEF-SD-MI in the benchmark datasets are
shown inTable 9. This algorithmobtains a different behavior condi-
tioned to the problem analyzed. Firstly, in the content-based image
problems such as Elephant, Fox and Tiger, the algorithm shows a
poor behavior with rules of low quality with bad results in confi-
dence with a low value for sensitivity. Furthermore, the normal-
ized unusualness is below 0.5 that means rules should be discarded
for these problems. However, for the remaining problems and, spe-
cially, forMusk andMutagenesis, the results are interesting and pre-
cise as indicated by the sensitivity values.

Some of the most relevant rules for the NMEEF-SD-MI algorithm
can be observed in Table 10 where the algorithm represents seven
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Table 5 Results obtained in the artificial datasets by considering the SD-Map-MI algorithm.

Dataset Number of
Rules

Number of
Variables

Unusualness Sensitivity Confidence

ds01 6.00 1.00 0.263 0.075 0.127
ds02 4.00 1.50 0.342 0.207 0.280
ds03 4.00 1.50 0.280 0.140 0.200
ds04 6.00 1.83 0.493 0.327 0.499
ds05 6.00 1.83 0.446 0.355 0.437
ds06 6.00 1.00 0.421 0.142 0.362
ds07 6.00 1.83 0.383 0.332 0.375
ds08 6.00 1.00 0.369 0.125 0.246
ds09 6.00 1.00 0.386 0.155 0.288
ds10 6.00 1.00 0.223 0.124 0.155
ds11 3.00 1.66 0.344 0.342 0.344
ds12 6.00 1.67 0.500 0.563 0.513
ds13 6.00 1.67 0.719 0.813 0.710
ds14 6.00 1.67 0.475 0.450 0.460
ds15 6.00 1.67 0.638 0.550 0.656
ds16 6.00 1.00 0.125 0.083 0.083
ds17 6.00 1.00 0.222 0.167 0.181
ds18 6.00 1.00 0.250 0.083 0.250
ds19 6.00 1.00 0.367 0.133 0.306
ds20 6.00 1.00 0.333 0.133 0.178
AVERAGE 5.65 1.34 0.379 0.265 0.332

Notes.MI = multiple instance; SD = subgroup discovery.

Table 6 Results obtained for the benchmarks by considering the CGBA-SD-MI algorithm.

Dataset Number of
Rules

Number of
Variables

Unusualness Sensitivity Confidence

EastWest 2.00 2.00 0.575 1.000 0.575
Elephant 2.00 1.18 0.648 0.576 0.671
Fox 2.24 1.20 0.564 0.247 0.564
Musk1 2.10 1.47 0.689 0.718 0.683
Musk2 2.08 1.54 0.639 0.573 0.647
Mutagenesis-Atoms 2.02 1.10 0.582 0.600 0.671
Mutagenesis-Bonds 2.00 1.18 0.596 0.611 0.646
Mutagenesis-Chains 2.06 1.22 0.604 0.597 0.658
Tiger 2.00 1.07 0.648 0.588 0.664
WestEast 2.00 2.00 0.600 0.950 0.575
AVERAGE 2.05 1.40 0.615 0.646 0.635

Notes.MI = multiple instance; SD = subgroup discovery.

linguistic labels (Extremely low, Very low, Low, Medium, High,
Very high, ExtremelyHigh) for datasets Elephant andMutagenesis-
Chains whereas it employs three labels for Musk-1 (Low, Medium,
High). Rules have between four and eight variables that allows to
the experts an easy analysis of the problem.We remember that these
problems have a high number of attributes (between 92 and 200)
and onlywith a lownumber of variables descriptions of the problem
are extracted. It is remarkable the bad behavior of this algorithm
for the EastWest andWestEast datasets, in which a large number of
rules is obtained and, therefore, the interpretability is bad.

Results obtained for the artificial datasets for the NMEEF-SD-
MI algorithm are presented in Table 11. With respect to the
interpretability obtained for this algorithm can be observed that
the algorithm obtains only one subgroup for each dataset, that is,
there is only one value for the target variable represented in the
knowledge extracted. However, the values obtained for the remain-
ing quality measures for this algorithm are very good. It is inter-
esting to remark the high values in confidence for the algorithm
instead of the rules contains a lower number of variables. Specifi-
cally, the average value for confidence is upper than 83%. On the

other hand, the unusualness of the subgroups is very high with val-
ues in some cases upper than 90% and it shows the great capacity of
this algorithm in order to solve problems in SD. We must highlight
that unusualness measures a balance between coverage and accu-
racy gain and it is the key concept within SD task.

5. CONCLUSIONS

The SD task has been considered in problems where a target vari-
able is unequivocally described by a set of features, also known as
instance. Nowadays, however, with the increasing interest in data
storage, new data structures are being provided such as the MI data
in which a target variable value is ambiguously defined by a set of
instances. Most of the proposals related to MI data are based on
predictive tasks and no supervised descriptive analysis can be pro-
vided when data is organized in this way. In this sense we have
proposed to extend the SD task by considering MI data, denoting
relations between features and a certain value of the target variable.
We have proposed three different SD approaches for mining inter-
esting subgroups inMI problems. The proposedmodels were based
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Table 7 Results obtained in the artificial datasets by considering the CGBA-SD-MI algorithm.

Dataset Number of
Rules

Number of
Variables

Unusualness Sensitivity Confidence

ds01 2.00 1.25 0.639 0.885 0.650
ds02 2.00 1.30 0.600 0.877 0.599
ds03 2.00 1.34 0.657 0.887 0.674
ds04 2.00 1.37 0.660 0.835 0.680
ds05 2.00 1.36 0.609 0.864 0.602
ds06 2.00 1.34 0.651 0.811 0.727
ds07 2.00 1.22 0.647 0.815 0.718
ds08 2.00 1.31 0.652 0.823 0.723
ds09 2.00 1.45 0.651 0.814 0.729
ds10 2.00 1.40 0.614 0.954 0.585
ds11 2.00 1.58 0.731 0.981 0.731
ds12 2.00 1.15 0.820 0.877 0.808
ds13 2.00 1.28 0.721 0.935 0.728
ds14 2.00 1.24 0.722 0.964 0.721
ds15 2.00 1.18 0.718 0.961 0.721
ds16 2.00 1.40 0.670 0.710 0.603
ds17 2.00 1.30 0.739 0.902 0.732
ds18 2.00 1.48 0.708 0.917 0.722
ds19 2.00 1.39 0.721 0.948 0.732
ds20 2.00 1.64 0.744 0.922 0.745
AVERAGE 2.00 1.35 0.684 0.884 0.696

Notes.MI = multiple instance; SD = subgroup discovery.

Table 8 Example of rules extracted by considering the CGBA-SD-MI algorithm.

Dataset Rule

Elephant IF atr-6 IN [−0.398, 2.5068] AND atr-13 IN [−0.0545, −0.0545] THEN class = 0
IF atr-217 IN [2.136, −0.106] AND atr-91 IN [0.0, 0.0] THEN class = 1

Musk-1 IF f92 IN [106.108, 1.769] THEN class = 0
IF f65 IN [−135.652, 72.419] AND f98 IN [−19.356, 120.874] THEN class = 1

Mutagenetis-chains IF charge1 IN [0.168, 0.811] AND e1 = i IN [0.0 0.0] THEN class = 0
IF charge3 IN [0.006, 0.073] AND e1 = i IN [0.0 0.0] THEN class = 1

Notes.MI = multiple instance; SD = subgroup discovery.

Table 9 Results obtained for the benchmarks by considering the NMEEF-SD-MI algorithm.

Dataset Number of
Rules

Number of
Variables

Unusualness Sensitivity Confidence

EastWest 43.34 4.64 0.585 0.705 0.502
Elephant 0.38 7.50 0.245 0.259 0.217
Fox 0.42 11.21 0.238 0.207 0.223
Musk1 1.00 5.28 0.700 0.670 0.698
Musk2 1.50 2.30 0.677 0.638 0.703
Mutagenesis-Atoms 7.17 3.57 0.547 0.330 0.756
Mutagenesis-Bonds 1.00 4.66 0.680 0.868 0.722
Mutagenesis-Chains 1.00 6.17 0.690 0.682 0.792
Tiger 0.47 8.82 0.324 0.314 0.279
WestEast 40.05 4.91 0.580 0.710 0.482
AVERAGE 9.63 5.91 0.527 0.538 0.537

Notes.MI = multiple instance; SD = subgroup discovery.

on three well-known algorithms in the SD field: 1) SD-Map that is
an exhaustive search approach; 2) CGBA-SD that is an evolutionary
algorithm based on grammar-guided genetic programming and 3)
NMEEF-SD, an evolutionary fuzzy system.

In this paper, therefore, we have formally presented the new con-
cept of SD on MI data, which could be approached from different
perspectives as it is demonstrated. The three approaches proposed
in this paper were analyzed on different scenarios, including either
real-world and synthetic datasets. The study presented in this con-
tribution provide an overviewon the usefulness of this newproblem

formulation by considering three different methodologies. Specifi-
cally, we have formally presented the new concept SD on MI data
analyzed from different perspectives with three approaches. These
models were analyzed on different scenarios including either real-
world and synthetic datasets.

As future research directions, it is important to analyze different
assumptions and not only the standard MI assumption defined
by Dietterich et al. [26]. In some specific problems the collec-
tive assumption might be more appropriate (Weidmann et al.
[27] determined a bag as positive if and only if at least a certain
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Table 10 Example of rules extracted by considering the NMEEF-SD-MI algorithm.

Dataset Rule

Elephant IF Atr10 = Very high AND Atr15 = Extremely low AND Atr38 = Extremely
low AND Atr54 = Extremely low AND Atr77 = Extremely low AND Atr80
= Extremely low AND Atr104 = Extremely low AND Atr209 = Extremely
low THEN TargetValue = 1

Musk-1 IF F67 = Low AND F86 = Low AND F92 = Medium AND F157 = Low
THEN TargetValue = 0

Mutagenetis-chains IF Charge3 = Medium AND (E1 = c) = Extremely high AND (E1 = 0) =
Extremely low AND (E3 = h) = Extremely low AND (E3 = n) = Extremely
low AND Q1 = Very low THEN TargetValue = 1

Notes.MI = multiple instance; SD = subgroup discovery.

Table 11 Results obtained in the artificial datasets by considering the NMEEF-SD-MI algorithm.

Dataset Number of
Rules

Number of
Variables

Unusualness Sensitivity Confidence

ds01 1.00 1.00 0.813 0.765 0.791
ds02 1.30 1.00 0.794 0.704 0.756
ds03 1.00 1.00 0.808 0.760 0.778
ds04 1.00 1.00 0.806 0.676 0.830
ds05 1.00 1.00 0.794 0.659 0.822
ds06 1.00 1.00 0.803 0.665 0.808
ds07 1.00 1.00 0.802 0.674 0.801
ds08 1.00 1.00 0.797 0.667 0.804
ds09 1.00 1.00 0.796 0.664 0.801
ds10 1.00 1.00 0.759 0.764 0.706
ds11 1.00 1.00 0.893 0.831 0.857
ds12 1.00 1.00 0.867 0.761 0.928
ds13 1.00 1.00 0.853 0.759 0.904
ds14 1.00 1.00 0.890 0.780 0.929
ds15 1.00 1.00 0.850 0.735 0.897
ds16 1.23 1.36 0.630 0.440 0.612
ds17 1.00 1.00 0.925 0.850 0.910
ds18 1.00 1.00 0.917 0.858 0.926
ds19 1.00 1.00 0.905 0.810 0.902
ds20 8.44 1.00 0.820 0.720 0.899
AVERAGE 1.40 1.02 0.826 0.727 0.833

Notes.MI = multiple instance; SD = subgroup discovery.

number of instances in such bag produce a positive outcome).
This and other assumptions (count-based assumption, for exam-
ple, where a minimum and a maximum number of instances are
required to be positive in order to consider the bag as positive)
might be interesting to be studied. In this regard, this paper might
be the key for future research works on Medicine or Bioinformat-
ics problems, where instances are associated to the same key and
it is interesting to extract highly interpretable knowledge. Finally,
not only adaptations to already existing proposals but also com-
pletely new algorithms (sequential, parallel and distributed com-
puting) might be proposed in a near future.
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