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Abstract 
In this paper, a multi-objective shortest path 
evolutionary algorithm (MOSPEA) is presented for an 
undirected network. The algorithm differs from the 
others as it uses an external set to maintain non-
dominated solutions and different selection strategy. 
Property of MOSPEA about stochastic convergence is 
analyzed. Simulation experiments demonstrate the 
availability and efficiency of MOSPEA. The study 
shows that MOSPEA may hopefully be a feasible 
approach for multi-objective shortest path. 
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1. Introduction  
The shortest-path problem is a classical combinatorial 
optimization problem in network theory. This problem 
is to find the shortest route between a source and a 
destination in a given network.  Many complicated 
problems can be described by it, for instance network 
routing, vehicle routing, path planning and scheduling 
etc. [1]-[3]. Several good methods have been proposed 
to solve the problem including the well-known 
Dijkstra algorithm, the Bellman’s dynamic 
programming algorithm, the Bellman-Ford algorithm, 
and the heuristic algorithm [4]. 

For the traditional shortest path problem, the 
objective function is often single, such as minimum 
cost or minimum distance. In fact, many shortest-path 
choosing problem in our real life is a shortest path 
decision problem based on multi-objective, for 
instance, we might want to find a path for a lorry that 
minimizes the distance and cost; or to find the route 
for data transmission that minimizes its cost, delay and 
number of hop in a computer network. This 
optimization problem, called multi-objective shortest 
path, is required able to deal with multiple objectives, 
i.e. minimizes each objective function. In principle, 
multi-objective optimization (MOP) is quite different 
from the single-objective optimization. Multiple 
objective are usually conflicting and there exists no 

best solution to the problem, but a set of Pareto 
optimal solutions representing the best compromise 
among the objectives. Pareto optimal solutions are 
characterized that no other solution exists being 
superior in all objectives. For this research, a Pareto 
optimal solution means a Pareto optimal path, and our 
algorithm will look for the set of Pareto optimal paths. 

There are some standard methods for dealing with 
multi-objective optimization problems, such as the 
linear weighting method, the distance function method 
and the constraint method [5]-[6], that have to 
transform the multi-objective problem into a single 
objective problem which can be solved using 
nonlinear optimization. Recently, evolutionary 
algorithms (EA) were found useful for solving MOP, 
and many kinds of evolutionary methods are proposed 
to solve the problem [7]. In this paper we proposed a 
EA to solve the multi-objective shortest path problem, 
and tested the algorithm by random network. The 
experimental results show the EA may hopefully be an 
efficient approach for multi-objective shortest path 
based network optimization problems.  

2. Problem formulation 
 Let G = (V, A) be an undirected graph in which V= 
{1,2…n} is the set of vertices (nodes) and 

{( , ) , 1, 2 ; }A i j i j n i j⊆ = ≠L  is the set of arcs 
(edges). Without loss of generality, we only 
considered the graph in which there exists at most one 
edge between a pair of ordered nodes. For a given 
graph, each edge connecting two nodes i and j is 
specified by a weight vector W ij = (wij

1, wij
2,… wij

K ), 
where W ij is a K-degree vector having K additive arc 
metrics wi j

k >0. A path from the source node s to the 
end node t is represented as a sequence of nodes (s l 
m …k t ). On the additivity of the arc metrics, the path 
P=(s, l,… k, t) is specified by a k-degree vector W (P) 
= (W1

 (P ), W 2
 (P ),…W K(P) ) where for each 

component Wk
 ( P ) the following holds:  
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In other words, the vector W(P) of the path P 
consists of the vector sum of the vectors 



corresponding to arcs. In general a multi-objective 
shortest path is a kind of vector optimization problem, 
which can be described as follows:   

Minimize  W (P) = (W1
 (P), W 2

 (P ),…WK
 (P) ) 

s.t      stP P∈  
where Pst, called feasible set, is the set of paths 
between node s and node t, P decision variable, and W 

(P) objective vector. In order to measure the 
performance of different path, we give the following 
definition. 

Definition 1: Let P1, P2∈Pst, path P1 is said to 
dominate path P2 (also written as P1f P2) if and only 
if W ( P1 ) is partially less than W ( P2 ), i.e., i∀ ∈ {1, …, 
n}, W i( P1 ) ≤ W i( P2 ) and i∃ ∈ {1, …, n}: W i( P1 ) < 
W i( P2 ) 

Definition 2: A path P* P∈ st is said to be Pareto 
optimal path or a non-dominated path if and only if 
there is no path P∈Pst such that Wi ( P ) ≥  Wi ( P* ) for 
all i {1,2,…,∈ n}, with at least one strict inequality. 
The set of all Pareto optimal paths is called the Pareto 
optimal set, and the set of all non-dominated objective 
vectors is called the Pareto front (PF). 

3. Proposed EA for the problem 
 In this study, we will use a multi-objective 
evolutionary algorithm to solve the problem without 
combining the sub-objective functions into a single 
objective function. Our algorithm will look for the set 
of non-dominated paths for the user, and give the 
liberty to choose the best path from the set depending 
on the specific requirement. The algorithm called 
multi-objective shortest-path evolutionary algorithm 
(MOSPEA) is as follows: 

1: Generate random initial population Pop with 
size N and create the empty external set of non-
dominated individuals Pop'. 

2: sort the population based on non-domination 
and calculate the niche count of each individual 

3: Remove solutions within Pop' and copy non-
dominated members of Pop to Pop'. 

4: Select individuals from Pop by using rank and 
niche count, until the mating pool is filled 

5: Perform crossover and mutation to members of 
the mating pool  

6 Combine the offspring population with the 
external set Pop' and perform selection to the 
recombined members in order to create a new 
population Pop. 

7: If maximum number of generations is reached, 
then copy non-dominated members of Pop to replace 
the one of Pop' and stop, else go to Step 3. 

3.1. Encoding and initial population  

In this paper, we adopt a direct encoding method, 
which a chromosome represents a path from the source 
node to the end node. A gene in each chromosome 
indicates the ID of a node and a gene string uniquely 
determines a path in the graph. The length of the 
chromosome is variable, but it should not exceed the 
maximum length n, where n is the total number of 
nodes. For example, a path consisting of nodes 1, 5,11 
and 14 can be coded as a string (1, 5, 11, 14). 

The depth first search algorithm is utilized to 
produce the initial population. By using of the 
algorithm repeatedly, a set of possible paths from 
source node to destination node with specific number 
N is found, and it is regarded as initial population. 

3.2. Fitness value and niche count 
In step 2, all individuals in Pop are assigned a scalar 
fitness value. This is accomplished in the following 
process. First, evaluate the sub-objective functions Wi

 

( P ) (i = 1,2…K) for each individual in Pop in parallel. 
Afterwards, the individuals are sorted based on non-
domination into each front. The first front F1 being 
completely non-dominant set in the current population 
and the second front F2 being dominated by the 
individuals in the first front only and the front goes so 
on. Individuals in first front are given a rank (fitness) 
value of 1 and individuals in second are assigned rank 
value as 2 and so on. 

  Once the non-dominated sort is complete the 
niche count is assigned. Since the individuals are 
selected based on rank and niche count. The niche 
count is a measure of how similar an individual is to 
its neighbors. Large average niche count will result in 
better diversity in the population. 

Aiming at the specific problem of this research, 
the niche count is calculated as below: 

( ) ( )pq
q Pop

m p sh d
∈

= ∑                (1) 

Where m(p) denotes the niche count of the 
individual p, dpq is the distance between individuals p 
and q and sh(dpq) is the sharing function. The 
expression of dpq and sh(dpq) is written as 
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Here ∆Wi (pq) = Wi (p) − Wi (q), σ is the niche 
radius, and it is a good estimate of minimal separation 
expected between the goal solutions. We introduce a 
new concept of adaptive sharing, i.e., the value of σ is 



not kept fixed but dynamically updated in every 
iteration of the algorithm. Let ∆Wi = max{|Wi (p) − Wi 
(q)|: p,q∈Pop}, the niche radius is defined as 
following 
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3.3. The process of evolution 
① Selection 
The individuals are selected from the population by 
using binary tournament selection based on the rank 
and niche count. An individual is selected in the rank 
is less than the other or if niche count is greater than 
the other. For example, given two individuals Pi and Pj, 
if rank(Pi) < rank(Pj) or if Pi, Pj belong to the same 
front  and m( Pi ) > m( Pj ) i.e. the niche count is more, 
then the individual Pi is selected. 
② Crossover and mutation 

Two chromosomes can be crossed if they have at 
least one pair of same gene (node) except for source 
and destination nodes. If there are more pairs of 
common genes, one pair is randomly chosen and the 
locus of each node becomes a crossing site of each 
chromosome. It is possible that loops are formed 
during crossover. The strategy of repair operator is 
adopted to eliminate the infeasible chromosomes. 
Firstly, examine loops in the offspring chromosome 
and mark the location of their start and end. Secondly, 
find out the largest loop and remove the genes within 
the largest loop from the chromosome. The proposed 
repair operator is described in following example: 

parent1:︱1 2 7 3 5 6 9︱ parent2:︱1 3 4 6 7 8 9︱  
offspring1:︱1 2 7 3 4 6 7 8 9︱(repair)→︱1 2 7 8 9︱  
offspring2:︱1 3 5 6 9︱ 

In order to perform a mutation, a node, called 
mutation point, is randomly selected from the chosen 
path. Then, starting from the node, we use the depth 
first search to find the following nodes until the end 
node is found. It is noticed that loops may be produced 
in the course of mutation, thus the repair operator is 
also performed to the offspring chromosomes.    

3.4. Recombination and Selection 
The offspring population is combined with the 
external set of non-dominated individuals Pop', and 
selection is performed to form the individuals of the 
next generation. Similarly, Population is now sorted 
based on non-domination. The new generation is filled 
by each front subsequently until the population size 
exceeds the current population size. If by adding all 
the individuals in front Fi the population exceeds N 

then individuals in front Fi are selected based on their 
niche count in the descending order until the 
population size is N. Obviously, elitism is ensured for 
all the previous and current best individuals are added 
in the population. 

3.5. The analysis of Convergence  
Definition 3: A evolutionary algorithm is said to 
converges to the global optimal solution S * with 
probability one if the following holds: 

( ) *( lim ) 1t

t
p S S ε

→ ∞
− ≤ =  

where S (t) is the solution of t-th iteration.  
Lemma 1: A evolutionary algorithm converges to the 
global optimal solution with probability one if the 
algorithm could meet the following two conditions [8]:  

(1) Let I be feasible set,∀ x, x' I, ∈ x' is reachable 
from x by means of crossover and mutation;  

(2) The solution sequence Q 1, Q 2, ...Q t is 
monotone, i.e., ∀ t: every number of Q t +1 is not more 
inferior than that of Q t. 
Theorem1 (MOSPEA convergence): MOSPEA 
converges to the global optimal with probability one. 

  Proof: It was proved that MOSPEA would 
converge with probability one if it could satisfy the 
two conditions of lemma 1. By the proposed algorithm, 
mutation and crossover operators allow every point in 
a search space to be visited. Thus ∀ P, P'∈Pst, P' is 
reachable from P. 

  We keep in mind that the proposed algorithm use 
a external set Pop' as all elitist mechanism in order to 
maintain the best solutions, i.e., in every iteration the 
current best individual strings survive. Intuitively, as 
the algorithm iterating, the fitness of the strings in 
Pop' does not decrease. Thus, the sequence Pop' (1), 
Pop' (2), ...Pop' (t) is monotone. 

4. Illustrative example  
In the example, a undirected network with 50 nodes is 
generate random based on Waxman’s model [9]. In the 
network, the edge’s probability can be expressed by 

p (u, v) = α exp(-d (u,v)/βD ) 
Where d (u,v) is geometric distance from node u to 
node v, D is maximum distance between two nodes, 
parameter β determines the scale of short edge and 
long edge of the network, and parameter α determines 
the average degree of the network. Fig. 1 shows the 
topology of the data transmission network we consider. 
For any link, we can define a three-degree vector W ij 
= (wij

1, wij
2, wij

3 ), where three metrics wij
1, wij

2, wij
3 

denote cost, delay and number of hop, respectively. 
Assumed that the cost wij

1 and the delay wij
2 are all 

randomly generated and wij
3 = 1, here wij

1, wij
2 is 



uniformly distributed in the range of [20, 30], [1, 20], 
respectively. Let 1 be source node and 50 be end node 
of a path. In this example, the multi-objective shortest 
path problem is to find a shortest path from source 
node 1 to destination node 50, such that the cost, delay 
and number of hop are minimal. 
 

.  
Fig. 1: The topology of network 
 

We utilize the proposed algorithm to simulate the 
model, which were performed with MATLAB. The 
parameters setting for our experiment are population 
size 20, the maximum generation 80, crossover rate 
0.7 and mutation rate 0.2. Our algorithm is compared 
to the exhaustive search method, which finds the 
optimal values of the three parameters by exhaustively 
searching them one after another. Fig.2 shows that 
how these Pareto-optimal fronts are developed and 
converged towards global-optimal solution, and the 
table 1 explains the ratio of Pareto paths during 
evolution. 

 

 

 
Fig. 2: Evolutionary process 
 
generation    20     40         60          80 

ratio   6%    23%     41%  60% 

Table 1: The ratio of Pareto paths 

5. Conclusions 
The shortest path problem is currently an active area 
of research. In real need this optimization problem is 
often required able to deal with different and 
conflicting multiple objectives. In this paper, we 
proposed a feasible multi-objective shortest-path 
evolutionary algorithm (MOSPEA) for solving the 
problem. The algorithm differs from the others as it 
uses an external set to maintain non-dominated 
solutions and different selection strategy. Property of 
MOSPEA about stochastic convergence is analyzed. 
Simulation experiments demonstrate the availability 
and efficiency of MOSPEA. Our study shows that 
MOSPEA may hopefully be an efficient approach for 
multi-objective shortest path. 
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