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Abstract 

Improving forecasting especially time series forecasting accuracy is an important yet often difficult task facing 
forecasters. Fuzzy autoregressive integrated moving average (FARIMA) models are the fuzzy improved version of 
the autoregressive integrated moving average (ARIMA) models, proposed in order to overcome limitations of the 
traditional ARIMA models; especially data limitation, and yield more accurate results. However, the forecasted 
interval of the FARIMA models may be very wide in some specific Circumstances. For instance, when data has 
high volatility or includes a significant difference or outliers. In this paper, a new hybrid model of FARIMA models 
is proposed by combining with probabilistic neural classifiers, called FARIMAH, in order to yield a more general 
and more accurate model than FARIMA models for financial forecasting in incomplete data situations. The main 
idea of the proposed model is based on this fact that the distribution of the actual values in the forecasted interval 
by FARIMA is not uniform. Thus, by detecting the spaces with more probability for actual values using the 
probabilistic classifier, narrower interval than traditional FARIMA models can be obtained. Empirical results of 
exchange rate markets forecasting indicate that the proposed model exhibit effectively improved forecasting 
accuracy, so it can be used as an alternative model to exchange rate forecasting, especially when the scant data 
made available over a short span of time. 

Keywords: Fuzzy autoregressive integrated moving average (FARIMA); probabilistic neural classifiers; Time series 
forecasting; Foreign exchange markets; Fuzzy hybrid models. 
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1. Introduction 

Time series forecasting is an important area of 
forecasting in which past observations of the same 
variable are analyzed in order to develop a model 
describing the underlying relationship. The model is 

then used to extrapolate the time series into the future. 
This modeling approach is particularly useful when 
little knowledge is available on the underlying data 
generating process or when there is no satisfactory 
explanatory model that relates the dependent variable to 
other explanatory variables. Several different 
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approaches have been proposed to time series 
forecasting. One of the most popular and widely used 
time series models are autoregressive integrated moving 
average (ARIMA) models that have enjoyed fruitful 
applications in forecasting problems. The popularity of 
the ARIMA model is due to its statistical properties as 
well as the well-known Box–Jenkins methodology [1] 
in the model building process. In addition, ARIMA 
models can implement various exponential smoothing 
models. Although ARIMA models have the advantage 
of accurate forecasting in a short time period and easy to 
implement, these models have some limitations that 
detract from their popularity for financial time series 
forecasting, such as data limitation.  

The autoregressive integrated moving average models 
need the large amount of historical data (at least 50 and 
preferably 100 observations or more) in order to yield 
desired results [2]. However, in our society today, due 
to factors of uncertainty from the integral environment 
and rapid development of new technology, we usually 
have to forecast future situations using little data in a 
short span of time. The historical data must be less than 
what the ARIMA model requires which limits its 
application. The fuzzy regression is an interval-
forecasting model that suitable for the condition of little 
attainable historical data. However, the performance of 
the fuzzy regression models is not always satisfactory. 
In addition, these models do not include the concepts of 
the Box-Jenkins models for time series forecasting. 

In order to fulfill the limitations of the fuzzy 
regression and the autoregressive integrated moving 
average models and also to yield more accurate results, 
the fuzzy autoregressive integrated moving average 
(FARIMA) is proposed by Tseng et al. [3]. This model 
is formulated based on the basic concepts of the 
ARIMA model and Tanaka fuzzy regression that 
combine the advantages of the fuzzy regression and 
ARIMA models. In FARIMA models, instead of using 
crisp parameters, fuzzy parameters, in the form of 
triangular fuzzy numbers are used. By using the fuzzy 
parameters, the requirement of historical data would be 
reduced. Their results of foreign exchange markets 
forecasting indicate that the FARIMA model not only 
can make good forecasts but also provides the decision 
makers with the best and worst possible situations [3]. 
However, the forecasting interval of the FARIMA 
models may also be very wide if data includes a 
significant difference or outliers or when data has the 

high volatility; and hence, it is not wise to apply them 
blindly to any type of data.  

Using hybrid models or combining several models has 
become a common practice in order to overcome the 
limitations of components models and improve the 
forecasting accuracy. Many researches in time series 
forecasting have been argued that predictive 
performance improves in combined models. Typically, 
this is done because the underlying process cannot 
easily be determined. The motivation for using hybrid 
models comes from the assumption that either one 
cannot identify the true data generating process or that a 
single model may not be sufficient to identify all the 
characteristics of the time series. In pioneering work on 
combined forecasts, Bates and Granger showed that a 
linear combination of forecasts would give a smaller 
error variance than any of the individual methods. Since 
then, the studies on this topic have expanded 
dramatically [4]. 

In recent years, more hybrid forecasting models have 
been developed, integrating autoregressive integrated 
moving average (ARIMA), artificial neural networks 
(ANNs), and fuzzy models together in order to improve 
the prediction accuracy and overcome the deficiencies 
of the single models. Andres et al. [5] proposed a 
strategy for constructing a hybrid model, which 
combines the fuzzy clustering and the multivariate 
adaptive regression splines (MARS) in order to use their 
theoretical advantages of these models for bankruptcy 
forecasting, especially when the information applied for 
forecasting is drawn from company financial 
statements. Lin and Cobourn [6] combined Takagi–
Sugeno fuzzy system and a nonlinear regression (NLR) 
model for daily ground-level ozone predictions. Chang 
et al. [7] developed a hybrid model by integrating fuzzy 
rule base (FRB), self-organization maps (SOMs), and 
Genetic Algorithms (GAs) to forecast the future sales of 
a printed circuit board factory. Teoh et al. [8] proposed 
a hybrid model based on multi-order fuzzy time series, 
which employs rough sets theory in order to mine fuzzy 
logical relationship from time series and an adaptive 
expectation model to adjust forecasting results, to 
improve forecasting accuracy.  

Kim and Shin [9] investigated the effectiveness of a 
hybrid approach based on the artificial neural networks 
for time series properties, such as the adaptive time 
delay neural networks (ATNNs) and the time delay 
neural networks (TDNNs), with the genetic algorithms 
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in detecting temporal patterns for stock market 
prediction tasks. Khashei et al. [10] based on the basic 
concepts of multilayer perceptrons (MLPs), proposed a 
new hybrid model for financial time series forecasting 
using fuzzy regression models in order to overcome the 
data limitation of the multilayer perceptrons and yield 
more accurate results, especially in incomplete data 
situations. Li and Su [11] introduced a hybrid model, 
integrating genetic algorithm and hierarchical adaptive 
network-based fuzzy inference system (HANFIS) in 
which GA optimizes the structure and number of fuzzy 
if-then rules in a hierarchical ANFIS by finding the best 
parameter values of a subtractive clustering method. 

Pai [12] proposed the hybrid ellipsoidal fuzzy system 
(HEFST) model to forecast regional electricity loads in 
Taiwan. Azadeh et al. [13] presented a hybrid algorithm 
based on fuzzy linear regression (FLR) and fuzzy 
cognitive map (FCM) to deal with the problem of 
forecasting and optimization of housing market 
fluctuations. Huang et al. [14] presented a new 
forecasting model based on two computational methods, 
fuzzy time series and particle swarm optimization for 
academic enrollments. Yadav and Srinivasan [15] 
introduced a hybrid method using smooth transition 
autoregressive (STAR), feed-forward neural network 
(FFNN), and self-organizing map (SOM) for short-term 
load prediction. Yu et al. [16] proposed a novel 
nonlinear ensemble forecasting model integrating 
generalized linear auto regression (GLAR) with back-
propagation neural network (BPNN) in order to obtain 
accurate prediction in foreign exchange market. Khashei 
and Bijari [17] proposed a novel hybrid model of 
artificial neural networks (ANNs), based on the basic 
concepts of the Box-Jenkins methodology for 
autoregressive integrated moving average (ARIMA 
(p,d,q)) models, called ANN(p,d,q) model, in order to 
overcome the linear limitation of traditional neural 
networks and yield more accurate results. 

Amin-Naseri and Soroush [18] presented a hybrid 
model of feed forward neural networks for daily 
electrical peak load forecasting using self-organizing 
maps (SOMs). Lin and Wu [19], in similar work, 
proposed a hybrid neural network model to forecast the 
typhoon rainfall using the self-organizing maps and the 
multilayer perceptrons. Ismail et al. [20] proposed a 
hybrid artificial intelligence model combining the least 
square support vector machine (LSSVM) and self-
organizing maps for time series forecasting. Khashei 

and Bijari [21] introduced a new class of hybrid models 
by combining time series models such as autoregressive 
moving average (ARMA) and feed forward neural 
networks (FFNNs) and probabilistic neural networks 
(PNNs) for time series forecasting. Hajizadeh et al. [22] 
proposed a hybrid models based on Generalized 
Autoregressive Conditional Heteroscedasticity 
(GARCH) and Artificial Neural Networks to forecast 
the volatility of S&P 500 index. In this model, the 
estimates of volatility obtained by a GARCH model are 
fed forward to a neural network. 

Ince and Trafalis [23] proposed a two-stage hybrid 
model which incorporates parametric techniques such as 
autoregressive integrated moving average, vector 
autoregressive (VAR) and co-integration techniques, 
and nonparametric techniques such as support vector 
regression (SVR) and artificial neural networks for 
exchange rate prediction. Pham et al. [24] presented an 
improvement of hybrid of nonlinear autoregressive with 
exogenous input (NARX) model and autoregressive 
moving average model for long-term machine state 
forecasting based on vibration data. Shafie-khah et al. 
[25], based on wavelet transform, autoregressive 
integrated moving average, and radial basis function 
neural networks (RBFN), proposed a novel hybrid 
model to forecast electricity price.  

In this paper, the probabilistic neural classifiers are 
applied in order to construct an improved model of the 
fuzzy autoregressive integrated moving average models 
with higher forecasting accuracy, called FARIMAH. In 
the proposed model, a probabilistic neural network 
(PNN) is used to determine the spaces of the forecasted 
interval by FARIMA in which the probability of 
existing actual values is higher. Then, according to the 
achieved results by PNN, the spaces that have lower 
existing probability are deleted from obtained interval 
by FARIMA. In order to show the applicability and 
effectiveness of the proposed model, it is applied to 
foreign exchange rate markets forecasting and its 
performance is compared with the traditional fuzzy 
autoregressive integrated moving average models.  

The rest of the paper is organized as follows. In the 
next section, the basic concepts of the fuzzy 
autoregressive integrated moving average (FARIMA) 
models are briefly reviewed. In section 3, the 
probabilistic neural networks (PNNs), which are chosen 
as classifier model, are briefly reviewed. In section 4, 
the formulation of the hybrid proposed model is 
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presented. In section 5, the proposed model is applied to 
foreign exchange rate markets forecasting and its 
performance is compared with other those models. 
Conclusions will be the final section of the paper. 

2. The Fuzzy Autoregressive Integrated Moving 
Average (FARIMA) model  

For more than half a century, the autoregressive 
integrated moving average (ARIMA) models have 
dominated many areas of time series forecasting. In an 
ARIMA (p,d,q) model, the future value of a variable is 
assumed to be a linear function of several past 
observations and random errors [2]. That is, the 
underlying process that generates the time series with 
the mean   has the form: 

 (1)       tt
d aByB    

where, ty  and ta  are the actual value and random error 

at time period t, respectively;   ,B1B
p

1i
i

i 
  and 

   


q

1j
j

j B1B   are polynomials in B of degree p 

and q, )p,...,2,1i(i   and )q,...,2,1j(j  are 

model parameters,  B1 , B is the backward shift 
operator, p and q are integers and often referred to as 
orders of the model, and d is an integer and often 
referred to as order of differencing. Random errors, ta , 
are assumed to be independently and identically 
distributed with a mean of zero and a constant variance 
of 2 . 

However, the parameters of the autoregressive 
integrated moving average, p21 ,....,,   and 

q21 ,....,,  are crisp. In the fuzzy autoregressive 
integrated moving average models [3], Instead of using 
these crisp parameters, fuzzy parameters, p21

~,....,~,~   
and q21

~,....,~,~
 , in the form of triangular fuzzy 

numbers are used. A fuzzy ARIMA model is described 
by a fuzzy function with a fuzzy parameter as follows: 

(2)      tqtp aB~WB~    

(3)      t
d

t ZB1W  

(4)  1 1 2 2

1 1 2 2

....

...
t t t p t p t

p t p t p q t q

W W W W a

a a a

  

  
  

     

    

   

  

  
  

where  tZ  are observations, p21
~,....,~,~   and 

q21
~,....,~,~
 , are fuzzy numbers. Eq. (4) is modified as: 

(5)  1 1 2 2

1 1 2 2

....

...
t t t p t p t

p t p t p q t q

W W W W a

a a a

  

  
  

     

    

   

  

  
  

Fuzzy parameters in the form of triangular fuzzy 
numbers are used as follows: 

(6)    1 ,

0 ,
i

i i
i i i i i

i i

if c c
c

otherwise


 
  

 
 
     




  

where  i
~  is the membership function of the fuzzy 

set that represents parameter ii  ,  is the center of 
the fuzzy number, and ic  is the width or spread around 
the center of the fuzzy number. Using fuzzy parameters 

i  in the form of triangular fuzzy numbers and 
applying the extension principle, the membership of W 
in Eq. (5) is given as: 

(7)   

1 1

1 1

1

0, 0

0

p p q
t i t i t i t p ii i p

p p q
i t i i t p ii i p

t tw t

W W a a

c W c a

for W aW

otherwise

 




    


    

   
  
   






 
 

  

Simultaneously, tZ  represents the tth observation, 
and h-level is the threshold value representing the 
degree to which the model should be satisfied by all the 
data points kyyy ,....,, 21 to a certain h-level. A choice 
of the h-level value influences the widths c of the fuzzy 
parameters: 

)8(    k,...,2,1tforhyty   
The index t refers to the number of non-fuzzy data 

used for constructing the model. On the other hand, the 
fuzziness S included in the model is defined by 

(9)   
 



 
 

p

1i

k

1t

qp

1pi

k

1t
iptpiiitiii acWcS 

  
where pi  is the autocorrelation coefficient of time lag 
i-p, ii  is the partial autocorrelation coefficient of time 
lag i.  
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The weight of ic depends on the relation of time lag i 
and the present observation, where the p of AR (p) is 
derived by PACF and the q of MA (q) is derived by 

ACF. Next, the problem of finding the fuzzy ARIMA 
parameters was formulated as a linear programming 
problem: 

 

(10)  
 

 

1 1 1 1

1 1 1 1

1 1

1 1,2,..,

. 1

p p qk k

i ii t i i i p t p i
i t i p t

p p q p p q

i t i t i t p i i t i i t p i t
i i p i i p

p p q

i t i t i t p i i t i i t p i
i i p

Minimize S c W c a

W a a h c W c a W t k

subject to W a a h c W c a

 

 

 



   
    

 

     
     



     
  

 

 
       

 

    

  

   


1 1

1,2,..,

0 1, 2,...,

p p q

t
i i p

i

W t k

c for i p q



  

 
  

 
  

  

  

 
At last, according to the Ishibuchi and Tanaka [26] 

opinion, the data around the model's upper bound and 
lower bound is deleted when the fuzzy ARIMA model 
has outliers with wide spread, and then reformulating 
the fuzzy regression model.  

3. Probabilistic Neural Networks (PNNs)  

The probabilistic neural network (PNN) is a Bayes–
Parzen classifier [27] that is often an excellent pattern 
classifier in practice. The foundation of the approach is 
well known decades ago (1960s), however, the method 
was not of a widespread use because of the lack of 
sufficient computation power until recently [28]. 
Donald Specht [29] first introduced the probabilistic 
neural networks in 1990, who demonstrated how the 
Bayes–Parzen classifier could be broken up into a large 
number of simple processes implemented in a 
multilayer neural network each of which could be run 
independently in parallel.  

Because the probabilistic neural network is primarily 
based on Bayes–Parzen classification, it is of interest to 
discuss briefly both Bayes theorem for conditional 
probability and Parzen’s method for estimating 
probability density function of random variables. In 
order to understand Bayes’ theorem, consider a sample 

]x,...,x,x[x n21  taken from a collection of samples 
belonging to a number of distinct populations 

)K,...k,...,2,1( . Assuming that the (prior) probability that 
a sample belongs to the kth population (class) is kh , the 
cost associated with misclassifying that sample is kl , 
and that the true probability density function of all 
populations )x(f),...,x(f),...,x(f),x(f Kk21  are known, 

Bayes theorem classifies an unknown sample into the 
ith population [30] if  

(11) .K,...2,1j,ij)x(flh)x(flh jjjiii   

The density function )x(fk  corresponds to the 
concentration of class k  examples around the unknown 
example. As seen from Eq. (11), Bayes’ theorem favors 
a class that has high density approximately the unknown 
sample, or if the cost of misclassification or prior 
probability is high.  

The biggest problem with the Bayes’ classification 
approach lies in the fact that the probability density 
function )x(fk  is not usually known. In nearly all 
standard statistical classification algorithms, some 
knowledge regarding the underlying distribution of the 
population of all random variables used in classification 
should be known or reasonably assumed. Most often, 
normal (Gaussian) distribution is assumed; however, the 
assumption of normality cannot always be safely 
justified [31]. When the distribution is not known 
(which is often the case) and the true distribution 
deviates considerably from the assumed one, the 
traditional statistical methods normally run into major 
classification problems resulting in high 
misclassification rate. There is a need to derive an 
estimate of )x(fk , from the training set composed of 
the training example, rather than just assume normal 
distribution. The resulting distribution will be a 
multivariate probability density function (PDF) that 
combines all the explanatory random variables.  

In order to derive such distribution estimator from a 
set of training examples, the Parzen’s method [32] is 
usually used. The univariate case of PDF was proposed 
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by Parzen [32] and then was extended to the 
multivariate case by Cacoullos [33]. The multivariate 
PDF estimator, )x(g , may be expressed as: 

(12) 
1 2

1 2

1 1, 2 2, ,

1 1 2

1( , ,..., )
...

, ,..., ,

n
n

N
i i n n i

i n

g x x x
N

x x x x x x
W

  

  

 

   
 
 


 

where n21 ,...,   are the smoothing parameters 
representing standard deviation (also called window or 
kernel width) around the mean of n random variables 

n21 x,...,x,x , W  is a weighting function to be selected 
with specific characteristics [27, 29], and N  is the total 
number of training examples. Now, if all smoothing 
parameters are assumed equal (i.e., 

  n21 .... ) and a bell-shaped Gaussian 
function is used for W , a reduced form of Eq. (12) is as 
follows [34]:  

 (13) ,
2

)xx(
expN

1
)2(

1)x(g
N

1i
2

2
i

n2
n 














 



 

where x  is the vector of random variables (explanatory 
variables), and ix  is the ith training vector. Eq. (13) 
represents the average of the multivariate distributions 
where each distribution is centered at one distinct 
training example. It is worth mentioning that the 
assumption of a Gaussian weighting function does not 
imply that the overall PDF will be Gaussian (normal), 
however, other weighting functions such as the 
reciprocal function ( 2r1

1)r(w


 ) may be used. As 

the sample size, N , increases, the Parzen’s PDF 
estimator asymptotically approaches the true underlying 
density function.  

Regarding the network’s operation based on the 
aforementioned mathematics, consider the simple 
network architecture in Fig. 1 with n input nodes in the 
input layer, two population classes (classes 1 and 2), 

1N  training examples belonging to class 1, and 2N  
examples in class 2. The pattern layer is designed to 
contain one neuron for each training case available and 
the neurons are split into the two classes. The 
summation layer contains one neuron for each class. 
The output layer contains one neuron that operates 
trivial threshold discrimination; it simply retains the 
maximum of the two summation neurons [35].  

The probabilistic neural network executes a training 
case by first presenting it to all pattern layer neurons. 
Each neuron in the pattern layer computes a distance 
measure between the presented input vector and the 
training example represented by that pattern neuron. 
The probabilistic neural network then subjects this 
distance measure to the Parzen window (weighting 
function, W ) and yields the activation of each neuron in 
the pattern layer. Subsequently, the activation from each 
class is fed to the corresponding summation layer 
neuron, which adds all the results in a particular class 
together. The activation of each summation neuron is 
executed by applying the remaining part of the Parzen’s 
estimator equation (e.g., the constant multiplier in Eq. 
(13)) to obtain the estimated probability density 
function value of population of a particular class [28].  

 

Input Variables

21

S2S1

21

Output Unit

Pattern Unit

Class2Class1 Class Unit

Positive ReturnNegative Return

Probabilistic 
Neural Network

11N  1N 12N  2N

1x 2x 1nx  nx

Input Variables

21

S2S1

21

Output Unit

Pattern Unit

Class2Class1 Class Unit

Positive ReturnNegative Return

Probabilistic 
Neural Network

11N  1N 12N  2N

1x 2x 1nx  nx

 

Fig. 1.  A simple probabilistic neural network. 
 

If the misclassification cost and prior probabilities are 
equal between the two classes, and the classes are 
mutually exclusive (i.e., no case can be classified into 
more than one class) and exhaustive (i.e., the training 
set covers all classes fairly), the activation of the 
summation neurons will be equal to the posterior 
probability of each class. The results from the two 
summation neurons are then compared and the largest is 
fed forward to the output neuron to yield the computed 
class and the probability that this example will belong to 
that class.  

The most important parameter that needs to be 
determined to obtain an optimal probabilistic neural 
network is the smoothing parameters ( n21 ,...,  ) of 
the random variables [36]. A straightforward procedure 
involves selecting an arbitrary value of σ’s, training the 
network, and testing it on a test (validation) set of 
examples. This procedure is repeated for other σ’s and 
the set of σ’s that produces the least misclassification 
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rate (percentage of examples that were misclassified) is 
chosen. A better and more efficient procedure for 
searching for the optimal smoothing parameter of 
random variables and classes is proposed by Masters 
[27]. This procedure prevents any bias in the network to 
the correctly classified examples, and thus will be 
followed in this study. Other details on the mathematics 
as well as advanced variations of probabilistic neural 
networks are given in Specht [29] and Masters [27].  

4. Formulation of proposed model (FARIMAH)  

Although autoregressive integrated moving average 
models have the advantages of accurate forecasting over 
a short period and ease of implementation, they have 
data limitation. ARIMA models require at least fifty, or 
preferably one hundred and higher data in order to yield 
desired results. However, in real situations, due to 
uncertainty resulting from the integral environment and 
rapid development of new technology, future situations 
must be forecasted using small data sets over a short 
span of time. Efficient forecasting methods are, 
therefore, needed today that can achieve their objectives 
in situations with small quantities of historical data 
available [10]. 

Tseng et al. [3] proposed the fuzzy autoregressive 
integrated moving average (FARIMA) models in order 
to combine the advantages of the fuzzy regression and 
ARIMA models and also to simultaneously fulfill the 
limitations of these models. The FARIMA models not 
only can overcome the limitations of their components 
but also can provide better performance than ARIMA 
models. Despite all advantages cited for the FARIMA 
models, the forecasted interval of these models is 
extended in some specific data conditions. For instance, 
when data has high volatility or includes a significant 
difference or outliers. In additional, since in the basis 
model of FARIMA model, ARIMA, the future value of 
a variable is assumed to be a linear function of several 
past observations and random errors, the approximation 
of FARIMA models may be totally inappropriate if the 
underlying mechanism is nonlinear. However, real 
world systems are often nonlinear [2]. 

The main purpose of the proposed model is to 
overcome two aforementioned limitations of the 
FARIMA models using unique distinction ability of 
nonlinear probabilistic classifiers and yield a more 
general and more accurate model than traditional 
FARIMA models in financial incomplete data 

situations. In the proposed model, the probabilistic 
neural networks (PNNs) are applied as nonlinear 
classifiers in order to determine more probability spaces 
for actual values in the forecasted interval by FARIMA 
model and also existing nonlinear patterns in the time 
series. There are a number of appealing features, which 
justify our adoption of this type of neural networks in 
this study. First, training of probabilistic neural 
networks is rapid, enabling us to develop a frequently 
updated training scheme. Essentially, the network is re-
trained each time the data set is updated and thus the 
most current information can be reflected in estimation. 
Second, the logic of probabilistic neural network is able 
to extenuate the effects of outliers and questionable data 
points and thereby reduces extra effort on scrutinizing 
training data. Third and the most important, 
probabilistic neural networks are conceptually built on 
the Bayesian method of classification which given 
enough data, is capable of classifying a sample with the 
maximum probability of success [35]. 

In our proposed model, based on the literature of 
hybrid models [37], a time series  ty  is considered to 
be composed of a linear autocorrelation structure ( tL ) 
and a nonlinear component ( tN ). Therefore, in the first 
stage of the proposed model, an autoregressive 
integrated moving average (ARIMA) is initially applied 
in order to model the linear component and to generate 
the residuals ( te ).  

(14)  1 1
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where, kx is equal to the ktz   for p,...,2,1k  ; and 

equal to the kpt   for qp,...,2p,1pk  , tL̂  is 
the estimation of the linear component at time t, 

q21 ,....,,   and p21 ,....,,   are the parameters of the 
ARIMA, and te  is the residual of the ARIMA at time t. 
Since the ARIMA cannot capture nonlinear structures, 
achieved residuals of this stage will contain all 
nonlinear structures, so they can be used as nonlinear 
component of time series. The results of the first stage 
are the optimum solution of the ARIMA parameters, 

 *
qp

*
2

*
1

* ,....,,   , the estimation of the linear 

component, tL̂ , and the nonlinear component, tN , 
which are used in the next stages.  
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In the second stage and after linear modeling, 
obtained linear parameters according to the basic 
concepts of FARIMA,  *

qp
*
2

*
1

* ,....,,   , are 
considered in the form of triangular fuzzy numbers as 
Eq. (6). Then the minimal fuzziness of these parameters 
is determined using the same criterion as in the Eq. (10).  

In the third stage, based on the Ishibuchi and Tanaka 
[26] opinion, the data around the model's upper and 
lower boundaries are deleted and then the model is 
reformulated. The result of this stage is a fuzzy model 
as follows: 

(15)  1 1 1

1 1 1
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where i  is the center of the fuzzy number, and ic  is 
the width or spread around the center of the fuzzy 
number. Finally, in the fourth stage, a probabilistic 
neural network is designed and trained in order to 
determine more probability spaces for actual values. For 
this purpose, the forecasted interval in the previous 
stage is first divided in to n equal subintervals. Then 
each k consecutive subinterval is considered as a class 
with assigned numbers “class=1, 2,…, n-k+1”. Where n 
and k are integer, n>1, and k<n. Afterwards, the 
assigned number(s) of the mentioned subinterval(s) that 
consists of the actual value is considered as target 
value(s) of the probabilistic neural network. The 
probabilistic neural network is then trained by 
considering the target values and a subset of effective 
variables as output and input values, respectively. The 
effective variables on the target value of the mentioned 
probabilistic neural network are as follows:  

i) Lags 1 until pth of the time series at time t 
 pt2t1t z,...,z,z  . 

ii) Lags 1 until qth of the residuals of ARIMA at time 
t  qt2t1t e,...,e,e  . 

iii) Estimated value of the time series by ARIMA at 
time t  tŷ . 

iv) Lags 1 until rth of the estimated values of the 
ARIMA at time t  rt2t1t ẑ,...,ẑ,ẑ  . 

v) Estimated lower and upper bounds of the time 
series by FARIMA at time t  tt Up,Lo . 

vi) Lags 1 until sth of the estimated lower and upper 
bounds at time t  stst1t1t Up,Lo,...,Up,Lo  . 

where p, q, r and s are integer. The result of this stage is 
an interval with k/n width of FARIMA and confidence 
degree   (  is the distinction ability of the PNN in the 

test data). The flowchart of the hybrid proposed model 
is shown in Fig.2. It must be noted that   generally has 
a straight relationship to the number of the subintervals. 
Therefore, based on the conditions of the under-study 
problem, both width or confidence degree of the final 
interval can be considered as decision-making criterion. 
For instance, using proposed model, we can determine 
the maximum confidence degree of the forecasted 
interval for a given width or the minimum width of the 
forecasted interval for a given confidence degree. 
 

5. Application of the proposed model to 
financial markets forecasts  

In order to demonstrate the appropriateness and 
effectiveness of the proposed model, the following 
applications in exchange rate ─the United States dollar, 
British pound, and Euro all against the Iran rial─ 
forecasting have been considered. In the next section, 
the process of the proposed hybrid models is illustrated, 
as an example for forecasting the United States dollar 
against the Iran rial exchange rate.  
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Fig. 2.  The flowchart of the hybrid proposed model. 
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5.1. The exchange rate (US dollar/ Iran rial) 
forecasts  

The information used in this investigation consists 
of 42 daily observations of the exchange rate of United 
States dollar against Iran rial from 5 Nov to 16 Dec, 
2006 that are shown in Fig. 3. As in the previous works, 
applying the hybrid method, 35 observations (five 
weeks) are first used to formulate the model and the last 
seven observations (last week) are used to evaluate the 
performance of the proposed model [10]. 

Stage I: fitting the ARIMA model: Using the Eviews 
package software, the best-fitted model is ARIMA (2, 1, 
0) as follows. The fitted values by ARIMA model are 
plotted in Fig. 4.  

(16)  
1 29060.05 0.607 0.421 .t t t tZ Z Z a      

Stage II: determining the minimal fuzziness: 
Setting    0 1 2, , 9060.05,0.607 ,0.421    , the fuzzy 
parameters are calculated using Eq. (10) (with h=0) as 
follows. The obtained upper and lower bounds in this 
stage are plotted in Fig. 5. 

(17)  1

2

9060.05 0.607,0.00028

0.421,0.00 .
t t

t

Z Z

Z




 




  

It can be seen from Fig. 5 that the actual values 
located in the fuzzy intervals, however, the thread of 
fuzzy intervals are too wide, especially when the macro-

economic environment is smooth. Therefore, the 
method of Ishibuchi and Tanaka is applied in the next 
stage in order to resolve this problem and provide a 
narrower interval for the decision maker. 

Stage III: Deleting the outliers: It is known from the 
aforementioned results that the observation of 15 Nov is 
located at the upper bound (outlier); therefore, the LP 
constrained equation that is produced by this 
observation is first deleted and then the stage II is 
renewed, with h=0. The obtained upper and lower 
bounds in this stage are plotted in Fig. 6. These results 
for test data set before and after deleting the outlier data 
are also given in Table 1.  

Table 1.  Obtained results in stage III for test data before and 
after deleting outlier data* 

Before deleting After deleting 
Date Actual Lower 

bound 
Upper 
bound 

Lower 
bound 

Upper 
bound 

10-Dec. 9082 9080 9085 9081 9085 

11- Dec. 9083 9080 9085 9080 9084 

12- Dec. 9083 9080 9085 9081 9085 

13- Dec. 9082 9080 9085 9081 9085 

14- Dec. 9081 9080 9085 9080 9084 

15- Dec. 9082 9079 9084 9079 9083 

16-Dec. 9082 9079 9084 9080 9084 

Note: The upper and lower bounds values are rounded. 
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Fig. 3  Exchange Rate (US dollar/ Iran rial) from 5 Nov to 16 Dec 2006. 
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Fig. 4  ARIMA fitted values for US dollar against Iran rial exchange rate. 
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Fig. 5  Upper and lower bounds obtained for US dollar against Iran rial. 
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Fig. 6  Upper and lower bounds obtained for US dollar against Iran rial (after deleting). 

 

Stage IV: In the fourth stage, the probabilistic neural 
network is applied in order to diagnose more probability 
spaces for the actual values in the forecasted interval in 
the previous stage. Similar to the FARIMA model, the 
first 35 observations (training sample) are applied in 
order to train the designed network and the last seven 
observations (test sample) are applied in order to test the 
performance of the network. The number of the 
subinterval is considered equal to two. In the other 
hand, the forecasted interval by FARIMA is divided to 
two equal subintervals ( 2n  ). In order to obtain the 
optimal architecture of the probabilistic neural network, 
based on the concepts of artificial neural networks 
design [38] and using Constructive algorithm in 
MATLAB7 package software, different network 
architectures are evaluated in order to compare the PNN 
performance. The best-fitted network, which is selected, 
and therefore, the architecture that present the best 
forecasting accuracy with the test data, is composed of 
five inputs and one output neuron. The architecture of 
the designed probabilistic neural network is shown in 
Fig. 7. The obtained results of the probabilistic neural 
network for training data set are also given in Table 2. 
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Fig. 7  The architecture of the designed PNN. 

where  
Var 1: First lag of the time series at time t  1tz  . 
Var 2: Estimated value of the time series by ARIMA 

at time t  tŷ . 
Var 3: First lag of the estimated values of the 

ARIMA at time t  1tẑ  . 
Var 4: Estimated lower and upper bounds of the time 

series by FARIMA at time t  tt Up,Lo . 
Var 5: First lag of the estimated lower and upper 

bounds at time t  1t1t Up,Lo  . 
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Table 2.  Detected subintervals for actual values in the 
forecasted interval by FARIMA for training data set. 

Subintervals 
Date 

Actual Detected 

7-November Lower Subinterval Lower Subinterval 

8-November Lower Subinterval Lower Subinterval 

9-November Lower Subinterval Lower Subinterval 

10-November Lower Subinterval Lower Subinterval 

11-November Upper Subinterval Lower Subinterval 

12-November Upper Subinterval Upper Subinterval 

13-November Upper Subinterval Upper Subinterval 

14-November Lower Subinterval Lower Subinterval 

16-November Lower Subinterval Lower Subinterval 

17-November Upper Subinterval Upper Subinterval 

18-November Upper Subinterval Upper Subinterval 

19-November Upper Subinterval Lower Subinterval 

20-November Upper Subinterval Upper Subinterval 

21-November Upper Subinterval Upper Subinterval 

22-November Upper Subinterval Upper Subinterval 

23-November Lower Subinterval Lower Subinterval 

24-November Lower Subinterval Lower Subinterval 

25-November Lower Subinterval Lower Subinterval 

26-November Upper Subinterval Upper Subinterval 

27-November Upper Subinterval Upper Subinterval 

28-November Lower Subinterval Upper Subinterval 

29-November Lower Subinterval Lower Subinterval 

30-November Upper Subinterval Upper Subinterval 

1-December Upper Subinterval Upper Subinterval 

2-December Upper Subinterval Upper Subinterval 

3-December Upper Subinterval Upper Subinterval 

4-December Upper Subinterval Upper Subinterval 

5-December Upper Subinterval Upper Subinterval 

6-December Upper Subinterval Lower Subinterval 

7-December Upper Subinterval Lower Subinterval 

8-December Upper Subinterval Upper Subinterval 

9-December Upper Subinterval Upper Subinterval 

As can be seen in Table 2, the probabilistic neural 
network can approximately determined the 85% of 
subinterval correctly. Now, based on the achieved 
subintervals by probabilistic neural network and 
achieved lower and upper bounds by fuzzy 
autoregressive integrated moving average, the lower and 
upper bounds of the hybrid proposed model are 
calculated. These results for training data set are 
presented in Table 3 and Fig 8. In additional, the results 
of the probabilistic and proposed model for test data set 
are given in Table 4. 

Table 3.  Detected subintervals for actual values in the 
forecasted interval by FARIMA for training data set*. 

Date Actual Lower bound Upper bound 

7- November 9071 9070 9073 

8- November 9071 9069 9071 

9- November 9070 9069 9071 

10- November 9070 9068 9070 

11- November 9070 9070 9072 

12- November 9072 9070 9072 

13- November 9072 9072 9074 

14- November 9071 9070 9072 

16- November 9073 9071 9073 

17- November 9075 9074 9076 

18- November 9075 9075 9077 

19- November 9074 9075 9077 

20- November 9075 9075 9077 

21- November 9075 9075 9077 

22- November 9077 9075 9077 

23- November 9075 9074 9076 

24- November 9075 9073 9075 

25- November 9075 9073 9075 

26- November 9077 9075 9077 

27- November 9078 9077 9079 

28- November 9078 9075 9077 

29- November 9077 9076 9078 

30- November 9079 9078 9080 

1- December 9079 9079 9081 

2- December 9079 9079 9081 

3- December 9081 9079 9081 

4- December 9081 9081 9083 

5- December 9083 9081 9083 

6- December 9082 9083 9085 

7- December 9082 9082 9085 

8- December 9083 9082 9084 

9- December 9083 9083 9085 

Note: The upper and lower bounds values are rounded. 

Now, if suppose that our goal is to provide a interval 
with confidence coefficient of 100%; in the other hands, 
if we want to yield the narrowest interval with 
confidence coefficient of 100%, then n and k will be 
respectively equal to 5 and 3 and achieved interval of 
the proposed model will be a interval with 2.5 width. 
The lower and upper bounds of the proposed model for 
test data set with 5n  , 3k  , and 100%   are given 
in Table 5. 
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Table 4  Obtained results of the probabilistic neural network 
and proposed model for test data set in stage IV* 

Subintervals Bounds 
Date Actual 

Actual Detected Lower 
bound 

Upper 
bound 

10-Dec. 9082 Lower  Lower  9081 9083 

11- Dec. 9083 Upper  Upper  9082 9085 

12- Dec. 9083 Upper  Upper  9083 9085 

13- Dec. 9082 Lower  Lower  9081 9083 

14- Dec. 9081 Upper  Lower  9082 9085 

15- Dec. 9082 Upper  Upper  9081 9084 

16-Dec. 9082 Upper  Upper  9082 9084 

Note: The upper and lower bound values are rounded. 

In addition, if suppose that our goal is to provide a 
interval with 1.7 width; in the other hands, if we decide 
to obtain the maximum confidence of a interval with 1.7 
width, then n and k will be respectively equal to 5 and 2 
and achieved interval of the proposed model will be a 

interval with confidence coefficient of 57%. The lower 
and upper bounds of the proposed model for test data set 
with 5n  , 3k  , and 57%   are also given in 
Table 5. 

Table 5.   Obtained lower and upper bounds by the proposed 
model for test data set* 

Bounds (n=5, k=3, 
and α=100%) 

Bounds (n=5, k=2, 
and α=57%) Date Actual 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

10-Dec. 9082 9081 9084 9083 9085 

11- Dec. 9083 9082 9085 9082 9084 

12- Dec. 9083 9083 9085 9081 9083 

13- Dec. 9082 9081 9084 9083 9085 

14- Dec. 9081 9080 9083 9082 9084 

15- Dec. 9082 9081 9084 9081 9083 

16-Dec. 9082 9081 9084 9082 9084 

Note: The upper and lower bound values are rounded. 
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Fig. 8  Upper and lower bounds obtained by proposed model for training data (width =2.6 & α = 85%). 

 
5.2. Comparison with other forecasting models  

In this section, the predictive capability of the 
proposed model in both interval and point estimation 
cases is compared with some other fuzzy and nonfuzzy 
forecasting models in these fields, using three exchange 
rate data sets including the United States dollar, British 
pound, and Euro all against the Iran rial. The 
considered fuzzy and nonfuzzy interval forecasting 
models in this study are respectively including the 
fuzzy autoregressive integrated moving average 
(FARIMA) and classic autoregressive integrated 
moving average (ARIMA). In addition, the 
autoregressive integrated moving average (ARIMA), 
the multilayer perceptrons (MLPs) and Chen’s fuzzy 
time series (first-order) [39], Chen’s fuzzy time series 
(high-order) [40], Yu’s fuzzy time series [41], and 
adaptive neuro-fuzzy inference systems (ANFIS) [42] 

are respectively considered as nonfuzzy and fuzzy 
models in the field of the point estimation. The width of 
the forecasted interval, and MAE (Mean Absolute 
Error) and MSE (Mean Squared Error) are respectively 
employed as performance indicators in order to 
measure forecasting performance in the interval and 
point estimation cases. The MAE and MSE are 
respectively computed from the following equations: 

(18) 
1

1 N

i
i

MAE e
N 

   

(19)  2

1

1 N

i
i

MSE e
N 

   

Based on the results obtained from these cases 
studied (Table 6), the predictive capabilities of the 
proposed model are rather encouraging and the possible 
interval by the proposed model with 100% confidence 
is narrower than the possible interval of the fuzzy 
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autoregressive integrated moving average (FARIMA). 
The width of the forecasted interval in the proposed 
model is 2.5, 14.1, and 7.0 in the US dollar, Euro, and 
British pound exchange rate forecasting cases, 
indicating a 40.5%, 40.5%, and 39.76% improvement 
upon the possible interval of the FARIMA, 
respectively. Moreover, the width of the forecasted 
interval by the proposed model is narrower than 
obtained interval by ARIMA (95% Confidence 
Interval) model. 

In addition, according to the numerical results (Table 
7 and 8), the MAE and MSE of the proposed model are 

lower than the FARIMA for all aforementioned 
exchange rate cases. For example in terms of MSE, the 
percentage improvements of the proposed model over 
the FARIMA, are 25.63%, 22.04%, and 64.17%, in the 
US dollar, Euro, and British pound exchange rate 
forecasting cases, respectively. Similarity, the MAE 
and MSE of the proposed model are lower than Chen’s 
fuzzy time series (first-order and second-order), and 
Yu’s fuzzy time series, autoregressive integrated 
moving average (ARIMA), multilayer perceptrons 
(MLPs), and adaptive neuro-fuzzy inference systems 
(ANFIS) in all cases. 

Table 6.  Comparison of forecasted interval widths by the proposed model compared to other models (interval estimation). 

Improvement percentage 
Model 

C
ases  

Forecasted 
interval width ARIMA  

(95% Confidence) 
Fuzzy  

ARIMA 
Proposed Model 

(α=100%) 
ARIMA (95% Confidence Interval) 16.2 0.0 - - 
Fuzzy ARIMA 4.2 74.1 0.0 - 

Proposed Model (α=100%) 

U
S dollar 

/Iran rial 2.5 84.6 40.5 0.0 

ARIMA (95% Confidence Interval) 66.9 0.0 - - 

Fuzzy ARIMA 23.7 64.6 0.0 - 

Proposed Model (α=100%) 
Euro / 

Iran rial 14.1 78.9 40.5 0.0 

ARIMA (95% Confidence Interval) 56.8 0.0 - - 

Fuzzy ARIMA 11.6 79.6 0.0 - 

Proposed Model (α=100%) 

B. pound 
/Iran rial 7.0 87.7 39.7 0.0 

Table 7.   Comparison of the performance of the proposed model with those of other forecasting models (point estimation). 
US dollar / Iran rial Euro / Iran rial British pound / Iran rial 

Model  
MAE MSE MAE MSE MAE MSE 

Autoregressive Integrated Moving Average (ARIMA) 0.924 1.24 56.44 3443 19.772 849.5 

Chen’s fuzzy time series (first-order) 0.750 0.777 48.60 3324 29.047 1232.7 
Chen’s fuzzy time series (second-order) 0.750 0.777 48.60 3324 28.011 1110.3 
Yu’s fuzzy time series 0.750 0.777 40.27 1783 25.964 917.3 
Multilayer perceptrons (MLPs) 0.692 0.686 43.1 2173 18.112 415.7 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 0.625 0.547 40.89 1979 19.429 763.8 
Proposed Model (FARIMAH) 0.619 0.407 34.8 1542.8 15.662 273.7 

Table 8.   Improvement percentage of the proposed model in comparison with those of other forecasting models in point estimation. 
US dollar / Iran rial Euro / Iran rial British pound / Iran rial 

Model  
MAE MSE MAE MSE MAE MSE 

Autoregressive Integrated Moving Average (ARIMA) 33.01% 67.19% 38.34% 55.19% 20.79% 67.78% 

Chen’s fuzzy time series (first-order) 17.47% 47.64% 28.40% 53.59% 46.08% 77.80% 
Chen’s fuzzy time series (second-order) 17.47% 47.64% 28.40% 53.59% 44.09% 75.35% 
Yu’s fuzzy time series 17.47% 47.64% 13.58% 13.47% 39.68% 70.16% 
Multilayer perceptrons (MLPs) 10.55% 40.70% 19.26% 29.00% 13.53% 34.16% 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 0.96% 25.63% 14.89% 22.04% 19.39% 64.17% 
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6. Conclusions  

Time series forecasting has been an active research 
area for the last few decades. Improving forecasting 
especially time series forecasting accuracy is an 
important yet often difficult task facing forecasters. 
Despite the numerous time series models available, the 
research for improving the effectiveness of forecasting 
models has been never stopped. Several large-scale 
forecasting competitions with a large number of 
commonly used time series forecasting models 
conclude that combining several models or using hybrid 
models can be an effective way to improve forecasting 
performance. Additionally, because of the possible 
unstable or changing patterns in the data, using the 
hybrid method can reduce the model uncertainty, which 
typically occurred in statistical inference and time 
series forecasting. 

In this paper, a hybrid model of the fuzzy 
autoregressive moving average (FARIMA) models is 
proposed using the probabilistic neural networks 
(PNNs), namely FARIMAH, in order to yield more 
accurate results. The main idea of the proposed model 
is based on this fact that the distribution of the actual 
values in the forecasted interval by FARIMA is not 
uniform. Therefore, in proposed model, a probabilistic 
neural network is applied in order to determine the 
spaces of FARIMA interval that probability of existing 
actual vales in which is higher. Then the spaces that 
have lower existing probability are deleted from 
obtained interval by FARIMA, according to the 
achieved results by the probabilistic neural network. 
Empirical results of exchange rate forecasting indicate 
that the proposed model exhibit effectively improved 
forecasting accuracy, so it can be used as an alternative 
model to exchange rate forecasting, especially when the 
scant data made available over a short span of time. In 
addition, the proposed model based on the opinion of 
decision maker(s) can provide an interval with 
minimum width for a given confidence degree or 
maximum confidence degree for a given width.  
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