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Abstract

This paper comprises a new iterative method for multi-person decision making based on multiplicative
consistency with incomplete reciprocal preference relations (IRPRs). Additionally, multiplicative transi-
tivity property of reciprocal preference relation (RPR) is used at the first level to estimate the unknown
preference values and get the complete preference relation, then it is confirmed to be multiplicative con-
sistent by using transitive closure formula. Following this, expert’s weights are evaluated by merging
consistency and trust weights. The consistency weights against the experts are evaluated through multi-
plicative consistency investigation of the preferences given by each expert, while trust weights play the
role to measure the level of trust for an expert. The consensus process determines whether the selection
procedure should start or not. If it results in negative, the feedback mechanism is used to enhance the
consensus degree. At the end, a numerical example is given to demonstrate the efficiency and practicality
of the proposed method.
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1. Introduction

Decision making (DM) is an intellectual procedure
which is used to select the best option(s) amongst
several different options, it initiates when we have
to do something but do not know what. Every indi-
vidual faces DM situations in his/her daily life: com-
mon examples for these situations are shopping, to
choose what to eat, and deciding whom or what to
vote for in an election or referendum, and can be cat-
egorized in several different groups according to cer-
tain characteristics as the source(s) for the informa-
tion and the preference representation formats that
are used to solve the decision problem. In our frame-
work, the selection of the best alternative(s) from
a predetermined set X = {x1,x2,x3, ...,xn},n > 2 of
possible alternatives is the goal.

DM is not only the case for a single expert, where
he/she compares a finite set of alternatives and con-
struct a preference relation, but some decision prob-
lems have to be solved by a group of experts who
work together to find the best alternative(s) from a
set of feasible alternatives. This decision making
with multiple experts is called group decision mak-
ing (GDM) or also known as multi-person decision
making. To solve a GDM problem appropriately,
two key processes play an essential role:

(i) consensus process;
(ii) selection process.

The prior is an iterative process which is composed
of several consensus rounds, where the experts ac-
cept to negotiate diverse sentiments to have an ac-
ceptable level, but a unanimous or full consensus is
often not achievable in practice 13. After getting the
experts’ opinions close enough, the selection pro-
cess takes place which aims to rank and select (a)
suitable alternative(s) from a given set of feasible
alternatives. When a number of experts interact to
reach a decision, each expert may have exclusive in-
spirations or objectives and a different decision pro-
cedure, but has a common interest in approaching to
select the best option(s).

In modern era, various consensus models have
been proposed in literature for GDM against a num-
ber of preference relations 2,9,12,25. However, there

may arise some situations for DM problems in
which experts are unable to provide precise and
complete assessments due to the pressure to make a
quick decision, Complexity, or incomprehensive in-
formation against the problem to be explained, such
situations result in incomplete fuzzy preference rela-
tions (IFPRs) i.e., some preference values are miss-
ing. GDM in IFPRs environment has been receiv-
ing an intensive interest of researchers, and various
procedures have been presented to determine un-
known preference values17. Such as, a least squared
procedure was proposed by Gong8 in 2008 to de-
termine the priority vector for GDM in incomplete
preference relations’ (IPRs) environment. In 2010,
a goal programming model was presented by Fan
and Zhang7 for GDM to deal with IPRs in three
formats.In 2013, Xu et al. proposed logarithmic
least squares method to evaluate the priority weights
in GDM dealing with IFPRs and develop the ac-
ceptable fuzzy consistency ratio20. Xu and Wang21

in 2013, presented eigenvector method to repair an
IFPR with consistency test relation. In 2015, Xu
et al.22 presented a least deviation method to eval-
uate the priority weights for GDM in IRPRs envi-
ronment. In 2015, the trust based consensus model
and aggregation method for GDM were investigated
by Wu et al.19 in the context of incomplete linguistic
information.

Moreover, consistency is an important issue to
accept when data are provided by the experts 5,10

and is linked to the transitivity property. In 2007,
Herrera-Viedma et al.12 presented an additive con-
sistency based iterative scheme to evaluate the miss-
ing preferences in IFPRs. In 2008, Alonso et al.1 ex-
tended the idea proposed by Herrera-Viedma et al.12

to investigate the missing information against sev-
eral preference formats. In 2014, a consensus based
model was proposed by Wu and Chiclana18 for
multiplicative consistency of reciprocal intuitionis-
tic preference relations and discussed its applica-
tion to estimate the unknown preference degrees. In
2015, a confidence consistency driven approach was
proposed by Ureña et al.16 to handle GDM prob-
lems with incomplete reciprocal intuitionistic pref-
erence relations. This approach deals with confi-
dence level and implemented for both consistency
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and confidence in the determination procedure. In
2015, Ashraf et al.3 proposed a new method for
GDM with IFPRs based on T-consistency and the
order consistency, where T stands for a triangular
norm. In 2017, Xu et al.23 developed a consensus
based model for hesitant FPRs and used it in water
allocation management as an application.

To achieve an acceptable consensus level, feed-
back mechanism plays an important role in certain
consensus measures 6,25,26,27. In 25, Zhang et al. de-
veloped a consensus building method based on mul-
tiplicative consistency for GDM with IRPRs. In-
spired by the work of Zhang et al.25, we observed
that the multiplicative transitivity property i.e., rik

rki
=

ri jr jk
r jirk j

for all j 6= i,k ∈ {1,2,3,4} is violated or over-
looked. For example, if we consider the aggregated
group preference matrix constructed in 25:

P =


0.5 0.43 0.58 0.74
0.57 0.5 0.75 0.83
0.42 0.25 0.5 0.74
0.26 0.17 0.26 0.5

 (1)

the multiplicative transitivity for, say, i= 1 and k = 2
implies that r12

r21
=

r1 jr j2
r j1r2 j

must be satisfied for j = 3,4,
but from matrix P we have: r12

r21
= 0.7543859649

and r13r32
r31r23

= 0.4603174603, r14r42
r41r24

= 0.5829471733,
we can see that the aggregated matrix constructed
by Zhang et al.25 does not satisfy the multiplicative
consistency. We believe that the multiplicative tran-
sitivity property is very hard to satisfy while decimal
numbers are being used but to ensure consistency the
error can be minimized upto an insignificant level.

In this paper, we present an improved method for
consensus building in group decision making based
on multiplicative consistency with IRPRs. At the
first step, we evaluate the missing preferences of IR-
PRs based on the multiplicative transitivity. Then,
we construct the modified consistency matrices of
experts which satisfy the multiplicative consistency
and measure the level of consistency. The degrees
of importance are assigned to experts based on con-
sistency weights aggregated with trust weights. The
proposed method provides us with a valuable way
for consensus building in group decision making
based on multiplicative consistency with incomplete
preference relations.

The rest of the paper is organized as follows. In
Section 2, we focus on some preliminaries used in
this paper. In Section 3, we present a new proce-
dure to estimate the missing preferences in incom-
plete preference relations based on the multiplica-
tive transitivity and construct the modified consis-
tency matrices which satisfy the multiplicative con-
sistency. In Section 4, the proposed GDM process is
detailed. In Section 5, an example is given to illus-
trate the realism and achievability of the proposed
technique. Last section includes some conclusions.

2. Preliminaries

In 1965, Zadeh introduced fuzzy set theory 24, des-
ignated with a number between 0 and 1, to cope
with imprecise and uncertain information working
in complex situation.

Definition 1. Fuzzy Set24: A fuzzy set A on the uni-
verse of discourse X is a mapping from X to [0,1].
and is denoted by A = {(x,A(x))}. For any x ∈ X ,
the value A(x) is called the degree of membership
of x in A i.e., A(x) =Degree(x ∈ A), and the map
A : X → [0,1] is called a membership function.

Definition 2. Reciprocal Preference Relation
(RPR)5: An RPR R on a set X of alternatives
X = {x1,x2, ...,xn} is characterized by a membership
function R(xi,x j) = ri j, satisfying ri j +r ji = 1 for all
i, j ∈ {1,2,3, ..,n}.

An RPR may be conveniently denoted by matrix
R = (ri j)n×n, with the following interpretations:

R = (ri j)n×n =


0.5 r12 . . r1n

r21 0.5 . . r2n

. . . .

. . . .
rn1 rn2 . . 0.5

 (2)

where ri j represents the preference value of alterna-
tive i over alternative j, and all rii = 0.5. If ri j = 0.5,
this indicates that there is no difference between the
two alternatives; if ri j > 0.5, it implies that alterna-
tive i is superior to alternative j.

Definition 3. Incomplete Reciprocal Preference Re-
lation (IRPR)11: An IRPR R = (ri j)n×n carries at
least one unknown preference value ri j for which the
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expert does not have a clear idea of the degree of
preference of alternative xi over the alternative x j.

Definition 4. Multiplicative Transitivity Property15:
An RPR R = (ri j)n×n on a finite set X of alternatives
is said to be multiplicative transitive if and only if

ri j

r ji
=

rikrk j

r jkrki
(3)

holds for all i, j,k ∈ {1,2,3, ...,n} with non-zero
preference values. The multiplicative transitivity
leads to multiplicative consistency of RPR.

3. Evaluating missing preferences

This section puts forward a new scheme to estimate
the unknown preference values in an IRPR based on
multiplicative transitivity. Moreover, the proposed
procedure is used to construct a multiplicative con-
sistent matrix.

So as to determine missing preferences in an
IRPR R = (ri j)n×n, the pairs of alternatives for
known and unknown preferences are signified in
form of following sets:

Kv = {(i, j)|ri j is known}; (4)

Uv = {(i, j)|ri j is unknown}, (5)

where Kv is the set of pairs of alternatives with
known preference degrees whereas Uv represents
the set of pairs of alternatives with missing prefer-
ence degrees. The preference value of alternative
xi over x j belongs to [0,1] (i.e., ri j ∈ [0,1]). Since
ri j + r ji = 1 for 1 6 i 6 n and 1 6 j 6 n, therefore,
multiplicative transitivity (3) can be written as:

ri j =
rik.rk j

1− rik− rk j +2rik.rk j
, (6)

where 1 > ri j > 0 ∀ i, j ∈ {1,2,3, ...,n}. Hence, we
can define following set of intermediate alternative
x j which can be used to determine the unknown pref-
erence value rik of alternative xi over alternative xk:

Wi j = {k 6= i, j | (i,k)∈Kv,(k, j)∈Kv and (i, j)∈Uv},
(7)

for 1 6 i 6 n, 1 6 j 6 n and 1 6 k 6 n. As con-
sistency is an essential property for RPR, expression

(6) can be used to estimate the missing preference
value by using other preference values to maintain
the internal consistency of RPR. Definitely, the un-
known preference value ri j (i 6= j) can be calculated
using an intermediate alternative xk (k 6= i, j) based
on (6), but the aggregated value (global value) of ri j
is obtained by using the max aggregation operator
and is the degree of preference of alternative xi over
the alternative x j:

ri j =

{
max
k∈Wi j

(
rik.rk j

1−rik−rk j+2rik.rk j
), if |Wi j| 6= 0

0.5, otherwise
(8)

where |Wi j| is the cardinality of the set Wi j. Aggrega-
tion and fusion of information are basic concerns for
all kinds of knowledge based systems, from image
processing to decision making, from pattern recog-
nition to machine learning. From a general point of
view we can say that aggregation has for purpose
the simultaneous use of different pieces of informa-
tion (provided by several sources) in order to come
to a conclusion or a decision. Here max aggrega-
tion operator is used for optimal attitude while other
operators as min and average etc can also be used.
The value r ji is estimated by using reciprocity after
having the value of ri j as:

r ji = 1− ri j (9)

New sets of the pairs of alternatives for known and
unknown preference values are evaluated as follows:

K′v = Kv∪{(i, j)}, (10)

U ′v =Uv−{(i, j)}. (11)

After having a complete RPR, it needs to be fully
multiplicative consistent RPR R̃ = (r̃i j)n×n which
can be obtained by calculating r̃i j as:

r̃i j = max
k 6=i, j

(ri j,
rik.rk j

1− rik− rk j +2rik.rk j
) (12)

such that R̃ is stable with r̃i j + r̃ ji = 1. It remains in
work until two consecutive outcomes result in same
RPRs regarding their preferences, at this stage re-
lation R̃ will satisfy the multiplicative consistency
property.
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4. Iterative procedure for GDM

Now we turn towards our major task to develop a
GDM procedure in IRPRs environment. In this sec-
tion, a new step-by-step algorithm is presented for
GDM based on multiplicative consistency. An ex-
planatory example is given to validate the technique.
For ease, the structure of the resolution process is
also shown in Figure 1.

Suppose that there are n alternatives x1,x2, ...,xn
and m experts E1,E2, ...,Em. Let Rq be the fuzzy
preference relation for the expert Eq shown as fol-
lows:

Rq =
(

rq
i j

)
n×n

=


0.5 rq

12 . . rq
1n

rq
21 0.5 . . rq

2n
. . . .
. . . .

rq
n1 rq

n2 . . 0.5

 ,

where rq
i j ∈ [0,1] is the preference value given by ex-

pert Eq for alternative xi over x j, rq
i j+rq

ji = 1, 16 i6
n,1 6 j 6 n and 1 6 q 6 m and rq

ii = 0.5, for all i ∈
{1,2, ...,n} as an alternative cannot be preferred on
itself. Some of the preference matrices given by the
experts may be IRPRs, because of time constraint
or lack of information and complexity.The proposed
GDM technique consists of several stages which are
described as follows:

4.1. Estimating missing preferences

To determine the missing preference values of an
IRPR Rq given by the expert Eq, initially, the sets
Kq and Uq of pairs of alternatives for known and un-
known preferences are introduced as in (4) and (5)
respectively. After this, the multiplicative transitiv-
ity based preference values are estimated by using
(7)-(11) to construct the complete RPR Rq.

4.2. Consistency measures

After evaluating the complete RPRs, their par-
allel multiplicative consistent RPRs R̃q, for q =
1,2,3, ...,m, can also be obtained with the help of
(12). We can then approximate the degree of con-
sistency of an RPR Rq based on its similarity with

the corresponding multiplicative transitivity based
R̃q by computing their distances 25.

1. Multiplicative consistency index (MCI) of a
pair of alternatives is determined by using:

MCI(rq
i j) = 1−d(rq

i j, r̃
q
i j) (13)

where d(rq
i j, r̃

q
i j) is the error (distance) mea-

sured by εrq
i j = d(rq

i j, r̃
q
i j) =

∣∣∣rq
i j− r̃q

i j

∣∣∣. When

MCI(rq
i j) = 1 this implies that εrq

i j = 0 and
there is no inconsistency at all. Apparently,
the higher the value of MCI(rq

i j), the more
consistent rq

i j is with respect to the rest of the
preference values involving alternatives xi and
x j.

2. MCI associated to a particular alternative xi,
1 6 i 6 n, of an RPR is evaluated by:

MCI(xi)=
1

2(n−1)

n

∑
j=1

(MCI(rq
i j)+MCI(rq

ji))

(14)
with MCI(xi) ∈ [0,1]. When MCI(xi) = 1 all
the preferences involving the alternative xi are
fully consistent, otherwise, the lower MCI(xi)
the more inconsistent these preference values
are.

3. Finally we determine MCI of an RPR Rq by
taking the average of all MCI of alternatives
xi:

MCI(Rq) =
1
n

n

∑
i=1

MCI(xi) (15)

with MCI(Rq) ∈ [0,1]. When MCI(Rq) = 1
the preference relation Rq is fully consistent,
otherwise, the lower MCI(Rq) the more in-
consistent Rq is.

As soon as the MCI is computed in three levels
using expressions (13)-(15), it is rational to assign
the higher weights to the experts against the pref-
erence relations with larger consistency degrees re-
spectively. Hence, consistency weights can be as-
signed to the experts by using the relation:

Cw(Eq) =
MCI(Rq)

m

∑
q=1

MCI(Rq)

(16)
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where m represents the number of experts, and
MCI(Rq) is the MCI of the opinion of Eq.

4.3. Allocating weights to experts

The trust weight tw(Eq) is the degree of trust on each

expert by others such that
m

∑
q=1

tw(Eq) = m. Convinc-

ingly, the experts with larger trust weights can have
higher weight in the aggregation process. Primar-
ily, the same trust weight tw(Eq) has been assigned
to each expert. But the trust weights of experts do
not remain the same in each consensus round, the
procedure given by Zhang et al.25 will be used to
evaluate the trust weights. Final weights to experts
are allocated by emerging respective trust weights
and consistency weights under the use of following
relation25:

w(Eq) =
tw(Eq)×Cw(Eq)

m

∑
q=1

tw(Eq)×Cw(Eq)

(17)

with
m

∑
q=1

w(Eq) = 1.

4.4. Consensus measures

After having the RPRs with complete information,
it is necessary to measure the consensus among
the experts. Regarding this, similarity matrices
Sqr = (sqr

i j )n×n for every pair of experts (Eq,Er) (q =

1,2, ...,m− 1;r = q+ 1, ...,m) are to be determined
and defined as:

sqr
i j = 1−d(rq

i j,r
r
i j) (18)

where d(rq
i j,r

r
i j) =

∣∣∣rq
i j− rr

i j

∣∣∣. Then the collective
similarity matrix S= (si j)n×n is constructed after ag-
gregating all the similarity matrices by using follow-
ing relation.

si j =
2

m(m−1)

m−1

∑
q=1

m

∑
r=q+1

sqr
i j (19)

Three different levels are involved to compute
the degree of consensus amongst the experts as
follows25:

1. At first level, the consensus degree on a pair of
alternative (xi,x j), denoted by codi j is defined
to estimate the degree of consensus amongst
all experts on that pair of alternatives:

codi j = si j (20)

2. At second level, the consensus degree on al-
ternative xi, denoted by CoDi is defined to de-
termine the consensus degree amongst all the
experts on that alternative:

CoDi =
1

2(n−1)

n

∑
j=1, j 6=i

(si j + s ji) (21)

3. At third level, the consensus degree on the re-
lation, denoted by CoR is defined to calculate
the global degree of consensus amongst all the
experts judgments:

CoR =
1
n

n

∑
i=1

CoDi (22)

Once the global consensus level among all the ex-
perts is reached, it requires to compare with a thresh-
old consensus degree η , generally settled in advance
depending upon the nature of problem. If CoR > η ,
this shows that an acceptable level of consensus has
been obtained, and the decision process begins. Oth-
erwise, the consensus degree is not stable, and feed-
back mechanism is originated.

4.5. Feedback mechanism

The central aim of feedback mechanism is to pro-
vide comprehensive knowledge to experts, so as to
change their opinions acceptably to enhance the con-
sensus degree. When consensus is not sufficiently
high, then we have to identify the preference values
that are to be changed, and following formula helps
us in this regard:

Rq = {(i, j) | codi j <CoR and rq
i j is known} (23)

for i, j ∈ {1, ...,n}. The system recommends that the
corresponding expert has to increase value if it is
smaller than the mean value of the valuations of the
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rest of experts, or decrease it if it is greater than
the mean 25. All at once, there may be a possibil-
ity that the minority opinion is precise4, a conflict
resolution method has been proposed to handle such
a situation which contains correct opinions against
few experts14. We need to find out all alternatives
xi whose consensus measures CoDi are lower than
CoR, and then elaborate the particular pair of experts
whose opinions contradict one another on alternative
xi to the greatest extent, ( i.e., with the largest devi-
ation of S on alternatives xi, which can be measured

by the sum of
n

∑
j=1, j 6=i

(si j + s ji)). With this, we can

make them change their initial preferences and, at
the same time, accelerate the consensus process.

4.6. Accumulation phase

It may quite frequently happen that the preference
degree set forth by each expert is weighted differ-
ently. As soon as the weights for the experts are
estimated, their preferences need to be accumulated
into a global one. Determine the collective matrix
RC against all experts, shown as follows:

RC =
(
rc

i j
)

n×n
=

(
m

∑
q=1

w(Eq)× r̃q
i j

)
n×n

(24)

where 1 6 i 6 n,1 6 j 6 n.

4.7. Selection phase

After reaching a satisfactory consensus degree
amongst all experts, the selection process is initi-
ated to rank all the alternatives in order to select the
best option. For a consistent RPR R̃ = (r̃i j)n×n, the
ranking value Rv(xi) of alternative xi, i = 1, ..,n, is
defined by:

Rv(xi) =
2

n(n−1)

n

∑
j=1, j 6=i

r̃i j, i = 1, ..,n (25)

with
n

∑
i=1

Rv(xi) = 1.

Fig. 1. Resolution process for GDM with IFPRs

5. Numerical example

This section deals with a numerical example taken
from 25 in order to demonstrate the process of the
proposed method and its effectiveness.

Consider that four experts E1,E2,E3 and E4 from
different fields are requested to select the best alter-
native out of four alternatives x1,x2,x3,x4. The four
experts give their RPRs as follows:

R1 =

 0.5 0.6 r1
13 r1

14
0.4 0.5 0.7 r1

24
r1

31 0.3 0.5 0.9
r1

41 r1
42 0.1 0.5

 , R2 =

 0.5 0.6 0.7 r2
14

0.4 0.5 r2
23 0.7

0.3 r2
32 0.5 r2

34
r2

41 0.3 r2
43 0.5

 ,

R3 =

 0.5 0.3 0.5 0.75
0.7 0.5 0.8 0.6
0.5 0.2 0.5 0.8

0.25 0.4 0.2 0.5

 , R4 =

 0.5 0.4 0.55 0.65
0.6 0.5 0.8 0.75

0.45 0.2 0.5 0.7
0.35 0.25 0.3 0.5

 .
The threshold consensus level η settled in advance is
0.80. Now, we perform the following steps to evalu-
ate the result:
Step-i: Estimating the missing preferences
Initially, all the missing preference values need to
be determined using the multiplicative transitivity
property mentioned in Section 1.
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Taking R1, for example. The sets of pairs of al-
ternatives for known and unknown preference values
are determined as follows:

K1
v = {(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)},

U1
v = {(1,3),(3,1),(1,4),(4,1),(2,4),(4,2)}.

All the missing preference values are calculated un-
der the use of (7)-(11) to complete the given IRPR.
Hence, the complete RPR R1 against expert E1 is
obtained as follows:

R1 =

 0.5000 0.6000 0.7778 0.9692
0.4000 0.5000 0.7000 0.9545
0.2222 0.3000 0.5000 0.9000
0.0308 0.0455 0.1000 0.5000

 .
Similarly, the complete form of R2 can be obtained
and given as:

R2 =

 0.5000 0.6000 0.7000 0.7778
0.4000 0.5000 0.6987 0.7000
0.3000 0.3913 0.5000 0.6000
0.2222 0.3000 0.4000 0.5000

 .
Step-ii: Consistency analysis
Consistency analysis is being conducted to allocate
consistency weights to the experts. For this purpose,
all complete RPRs are to be converted into their mul-
tiplicative consistent forms by using (12), and are
given below:

R̃1 =

 0.5000 0.6000 0.7777 0.9692
0.4000 0.5000 0.6999 0.9545
0.2223 0.3001 0.5000 0.9000
0.0308 0.0455 0.1000 0.5000

 ,

R̃2 =

 0.5000 0.6000 0.7000 0.7778
0.4000 0.5000 0.6987 0.7000
0.3000 0.3913 0.5000 0.6000
0.2222 0.3000 0.4000 0.5000

 ,

R̃3 =

 0.5000 0.4304 0.5994 0.7916
0.5696 0.5000 0.6645 0.8341
0.4006 0.3355 0.5000 0.7174
0.2084 0.1659 0.2826 0.5000

 ,

R̃4 =

 0.5000 0.3504 0.5892 0.7375
0.6496 0.5000 0.7267 0.8389
0.4108 0.2733 0.5000 0.6620
0.2625 0.1611 0.3380 0.5000

 .

The significant MCI values of the experts are evalu-
ated using (13)-(15), as:

MCI(R1) = 0.9999, MCI(R2) = 1,
MCI(R3) = 0.8794, MCI(R4) = 0.9372.

Finally, the consistency weights to the experts are
computed by using (16), as:

Cw(E1) = 0.2620, Cw(E2) = 0.2620,
Cw(E3) = 0.2304, Cw(E4) = 0.2456.

Step-iii: Weights to experts
Primarily, all experts are assigned the same trust
weights: tw(E1) = 1, tw(E2) = 1, tw(E3) = 1 and
tw(E4) = 1. Therefore, the weights of the experts
remain the same in the first round as the consistency
weights based on (17), as:

w(E1) = 0.2620, w(E2) = 0.2620,
w(E3) = 0.2304, w(E4) = 0.2456.

Step-iv: Consensus measures
After getting complete RPRs, a mutual similarity re-
lation is computed by aggregating the different sim-
ilarity matrices among the experts using (18)-(19).
Then, the consensus measures are computed at the
three levels using (20)-(22).

S12 =

 1.0 1.0 0.9223 0.8086
1.0 1.0 0.9088 0.7455

0.9223 0.9088 1.0 0.7000
0.8086 0.7455 0.7000 1.0

 ,

S13 =

 1.0 0.8304 0.8217 0.8224
0.8304 1.0 0.9646 0.8796
0.8217 0.9646 1.0 0.8174
0.8224 0.8796 0.8174 1.0

 ,
S14 =

 1.0 0.7504 0.8115 0.7683
0.7504 1.0 0.9732 0.8844
0.8115 0.9732 1.0 0.7620
0.7683 0.8844 0.7620 1.0

 ,
S23 =

 1.0 0.8304 0.8994 0.9862
0.8304 1.0 0.9442 0.8659
0.8994 0.9442 1.0 0.8826
0.9862 0.8659 0.8826 1.0

 ,
S24 =

 1.0 0.7504 0.9892 0.9597
0.7504 1.0 0.8820 0.8611
0.9892 0.8820 1.0 0.9380
0.9597 0.8611 0.9380 1.0

 ,
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S34 =

 1.0 0.9200 0.9898 0.9459
0.9200 1.0 0.9378 0.9952
0.9898 0.9378 1.0 0.9446
0.9459 0.9952 0.9446 1.0

 .
1. On pair of alternatives:

CoD =

 1.0 0.8469 0.8890 0.8819
0.8469 1.0 0.9351 0.8719
0.8890 0.9351 1.0 0.8408
0.8819 0.8719 0.8408 1.0


2. On alternatives:

CoD1 = 0.8726, CoD2 = 0.8846,
CoD3 = 0.8883, CoD4 = 0.8649.

3. On relation:

CoR = 0.8776.

Now, the threshold consensus degree η settled in
advance is compared with global consensus degree
CoR of the relation; CoR > η . This indicates that
the given consensus degree is acceptable amongst
the experts, and we have to enter into accumulation
phase.
Step-v: Accumulation phase

RC =


0.5000 0.4992 0.6690 0.8370
0.5008 0.5000 0.6697 0.8374
0.3310 0.3303 0.5000 0.7176
0.1630 0.1626 0.2824 0.5000

 (26)

Step-vi: Selection phase
The relation RC obtained in (26) is clearly multi-
plicative consistent, therefore, apply (25) to estimate
the ranking value Rv(xi) of alternative xi, 1 6 i 6 4
as follows:

Rv(x1) = 0.3342, Rv(x2) = 0.3347,
Rv(x3) = 0.2298, Rv(x4) = 0.1013,

where
4
∑

i=1
Rv(xi)= 1 and Rv(x2)>Rv(x1)>Rv(x3)>

Rv(x4), therefore, the ranking order of alternatives
x1,x2,x3 and x4 is: x2 > x1 > x3 > x4, and the best
option is x2.

To validate the effectiveness of our proposed
method, we compare the results with Zhang et al.25

model which yielded the same results i.e., x2 > x1 >
x3 > x4 as ours. But the aggregated matrix obtained
by our method is multiplicative consistent at least
correct to three decimal places which can further be
extended i.e., if we take i = 1 and k = 2, the prefer-
ence value in aggregated matrix RC is r12 = 0.4992
and the multiplicative consistency requires the same
or closed output to r12 by r1 jr j2

r j1r2 j
r21 for j = 3,4 as:

r13r32

r31r23
r21 = 0.4992,

r14r42

r41r24
r21 = 0.4993.

which shows that r12 ≈
r1 jr j2
r j1r2 j

r21. Therefore, this
check can be made for the whole matrix.

6. Conclusion

In this paper, an improved hybrid consensus method
for GDM problems based on incomplete RPRs is
proposed. The multiplicative transitive property is
used to estimate the missing values and transitive
closure formula is used to make the matrices mul-
tiplicative consistent. The weights of the experts are
obtained from the consistency analysis and a calcu-
lation of degree of trust. Rationally, the experts with
high level of consistency and substantial trust degree
should have to assign large weights, in order carry
more importance in the aggregation process. Ad-
ditionally, a feedback mechanism making advice to
experts subject to their trust weights and consistency
weights was proposed which can accelerate the exe-
cution of a higher consensus degree. After reaching
a satisfactory consensus degree amongst all experts,
the selection process is initiated to rank all the alter-
natives in order to select the best option. Some nu-
merical examples were provided to highlight the ef-
ficiency and feasibility of the proposed method, and
some results in comparison with model proposed by
Zhang et al.25 were given. The results established
the practicability of the method, which can help us
to gain a greater insight into the GDM process.

To summarize, some of the major advantages of
the proposed technique are as follows:
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(1). In the proposed method, the missing preference
values for RPRs were estimated using multiplicative
transitivity which is more suitable to attain consis-
tency of RPRs as compared with other consistency-
based methods; (2). The trustworthiness of experts
weights were improved by combining consistency
weights and trust weights, and used to measure the
consistency of experts estimations upto acceptable
level; (3). The proposed method resulted in highly
consistent preference relations as compare to other
models25.

To the best of our knowledge, there are only few
hybrid methods of this kind which have been pro-
posed in literature to deal with GDM problems in
incomplete RPRs environment. We think that this
method handles GDM problems more efficiently and
yields more effective agreements.

In future, we will extend the proposed model for
multi-criteria decision making.
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