Andrew Poelstra

Research Director, Blockstream
scriptless@upsoftware.net

May 18, 2018

1/11



Mimblewimble and Scriptless Scripts

@ Mimblewimble, proposed in 2016 by Tom Elvis Jedusor
@ No scripts, only signatures.

@ “What script support is possible? We would need to translate
script operations into some sort of discrete logarithm
information.”

2/11



Not Just Mimblewimble

@ Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution.

@ These scripts must be downloaded, parsed, validated by all full
nodes on the network. Can’t be compressed or aggregated.

@ The details of the script are visible forever, compromising
privacy and fungibility.

@ With scriptless scripts, the only visible things are public keys
(i.e. uniformly random curvepoints) and digital signatures.

3/11



Adaptor Signatures

@ In a Schnorr multisignature, parties first exchange “public
nonces’ then exchange “partial signatures”.

o Partial signatures are objects that, when added to other
partial signatures, produce total signatures. This property is
publicly verifiable.

@ You can also make objects that, when added to
arbitrary-but-precommitted values, produce total or partial
signatures. These are adaptor signatures.

@ With an adaptor signature, when you learn the partial
signature you also learn the precommitted value, and
vice-versa.

4/11



Example: Atomic (Cross-chain) Swaps

@ Suppose Alice wants to trade 10 A-coins for 5 of Bob's
B-coins.

@ On their respective chains, each moves the coins to outputs
that can only be spent by a 2-of-2 multisignature with both
Alice and Bob.

@ They do sign the multisignature protocols in parallel, except
that in both cases Bob gives Alice adaptor signatures using a
commitment T to a secret value t.

@ Bob replaces one of the signatures (s, R) with (s + t, R) and
publishes it, to take his coins. Alice sees this, learns t, then
does the same thing on the other chain to take her coins.

5/11



Example: Blind Swaps (Nick 2017)

@ Suppose now that Alice is a mixing service who receives coins
and sends coins, but does not want to be able to link sends to
receives.

@ She can precommit to a blind signature sending coins to a user
Bob, and give an adaptor signature to this blind signature.

@ Similar to the atomic swap, Bob sends Alice coins that can
only be redeemed by her revealing the corresponding real
signature.

https://github.com/jonasnick/scriptless-scripts/blob/blind-swaps/md/partially-blind-swap.md

6/11



Example: zk-Contingent Payments (Maxwell 2011)

@ Suppose now that Alice is a computational service who wants
to sell the solution to some hard problem.

@ She can make a commitment T to a value t, and provide a
zero-knowledge proof that t is the encryption key to a solution
of the problem. (Also she provides the encrypted solution.)

@ She then sends an adaptor signature to T to Bob, for a
signature that would redeem coins jointly owned by her and
Bob. Bob can now sign.

7/11



Features of Adaptor Signatures

@ By attaching auxiliary proofs to T to ensure t is some
necessary data for a separate protocol, arbitrary steps of
arbitrary protocols can be made equivalent to signature
production.

@ In particular, by using the same T in multiple adaptor
signatures it is possible to make arbitrary sets of signatures
atomic with other arbitrary sets, enabling multi-hop payment
channels.

@ You can re-blind commitments between hops while retaining
the atomicity, for improved privacy.

8/11



Features of Adaptor Signatures

@ After a signature hits the chain, anyone can make up a
commitment T and compute a corresponding “adaptor
signature” for it, so such schemes are deniable.

@ Unlike hash-preimages, the secret t is revealed only to a party
in possession of an adaptor signature, who can efficiently
prove knowledge of it. This gives a transferrable proof that a
protocol (e.g. a Lightning invoice) was completed correctly.

e Existing multisignature outputs can be used with adaptor
signatures, no need to precommit to a specific protocol.

9/11



New Developments

e Lightning with scriptless scripts (AJ Towns and others,
lightning-dev 2018)

e ECDSA rather than Schnorr (Moreno-Sanchez, Kate 2018)

10/11



Thank You

Andrew Poelstra <wpsoftware.netless@upsoftware.net>

11/11



