Smart Teams: Simulating Large Robotic

Swarms in Vast Environments *

Stephan Arens!, Alexander Buss', Helena Deck!, Miroslaw Dynial:3,

Matthias Fischer':*, Holger Hagedorn', Peter Isaak!, Alexander Krieger!,
Jaroslaw Kutylowski':2, Friedhelm Meyer auf der Heide!, Viktor Nesterow!,
Adrian Ogierman', Jonas Schrieb!, Boris Stobbe!, Thomas Storm', and
Henning Wachsmuth?!

! Heinz Nixdorf Institute, University of Paderborn, Germany * mafi@upb.de
2 International Graduate School of Dynamic Intelligent Systems
3 DFG Graduate College Automatic Configuration in Open Systems

Summary. We consider the problem of exploring an unknown environment using
a swarm of autonomous robots with collective behavior emerging from their local
rules. Each robot has only a very restricted view on the environment which makes
cooperation difficult. We introduce a software system which is capable of simulating
a large number of such robots (e.g. 1000) on highly complex terrains with millions of
obstacles. Its main purpose is to easily integrate and evaluate any kind of algorithm
for controlling the robot behavior. The simulation may be observed in real-time via
a visualization that displays both the individual and the collective progress of the
robots. We present the system design, its main features and underlying concepts.

1 Introduction

The scenario where a team of exploring robots — we call it a Smart Team —
has to organize itself in order to explore an unknown terrain and execute
work is of high interest and importance. Practical applications include rescue
expeditions to dangerous areas or expeditions into the oceans or to plan-
ets. To develop local, distributed algorithms for controlling robot behavior,
a powerful simulator is needed. There are two challenges in creating such a
simulator. First, the robots can only have restricted local knowledge about
the global state of the system. This implies that the simulator has to provide
robots with an abstracted view of the terrain, different for every robot. For a
terrain with 1 million obstacles, each represented by four 32-bit float values

* Partially supported by the EU within the 6th Framework Programme under
contract 001907 (DELIS) and by the DFG Priority Programme 1183: Organic
Computing, project “Smart Teams: Local, Distributed Strategies for Self-
Organizing Robotic Exploration Teams”.

2 Holger Hagedorn, Thomas Storm, Henning Wachsmuth et al.

- ® /Home Base /Treasure
Robot

(@} . ‘ Obstacle

Fig. 1: The map with its important elements

VleW Radius
‘ Comm. Radius

(x-/y-position, length, width), this would result in ca. 15 GB data for 1000
robots, all needed to be held in memory. Current simulators are not able to
tackle this demand. Very space-efficient data structures that provide efficient
updates and queries are required. The second challenge lies in allowing rapid
prototyping of strategies. This can be ensured by designing a simple interface
for plugging in strategies and providing these strategies with a framework that
can handle routine tasks.

We present a software simulator which allows to test arbitrary strategies for
a large number of robots on terrains with dimensions ten orders of magnitude
greater than the size of a robot and consisting of over a million obstacles.

1.1 Related Work

Several so-called multi-robot simulators have already been developed. Stage
and Gazebo (see [6, 4]) are constructed to simulate mobile robots on a low level
of abstraction, in case of Gazebo even with a realistic simulation of rigid-body
physics. Even though Stage is designed to provide robots with a simpler view of
the environment than Gazebo, it still focuses on physical properties of sensors.
This high focus on realism and details conflicts with our algorithmic goals.
Moreover, published results on the performance of Stage do not provide any
information on its handling of complex terrain. Similar simulators have been
developed for special hardware and different purposes (e.g. Swarmbot3D in [3]
and TeamBots in [1]). A related category are multi-agent systems. The Breve
simulator [5] focuses on the physical properties of a solid body. GeoGraph
3D [2] simulates moving agents on a realistic geographical map. However,
multi-agent systems are not specifically designed for robot simulations which
increases implementation efforts to adapt our model. To conclude, no system
is currently able to meet all of our requirements, especially concerning the
number of heterogeneous robots, their local views and the map complexity.

2 Required Model and Features of the System
The model’s main elements are depicted in Fig. 1. We assume the map to be a

two-dimensional rectangular cutout of a plane. Numerous arbitrarily shaped
obstacles are spread over it, designating areas robots cannot enter. In addition,

Smart Teams: Simulating Large Robotic Swarms in Vast Environments 3

there is a single home base, the starting point for all robots. In contrast to those
static elements, treasures represent dynamic objects that can be excavated
and transported by robots. Treasures can be located at various positions on
the map in different quantities. Robots may freely move within the accessible
areas. The robot’s energy decreases with each performed action but it can
be recharged at the home base. Running out of energy disables a robot for
the rest of the simulation. Robots perceive information about the environment
within a view radius and are able to exchange information in a communication
radius. Different robot types exist, each with certain restrictions. For instance,
a transporter cannot excavate but only carry treasures.

Each robot has to obtain information locally and create its own repre-
sentation of the environment. Shared knowledge is only achieved by explicitly
exchanging information via communication. All robots act autonomously, that
is, each robot has an individual strategy that defines its behavior. Their main
goals are to explore the whole map, to excavate all treasures and to transport
them to the home base.

2.1 Features of the simulator

To realize the model we have developed a highly configurable and extensible
simulator in Java. It runs on a typical single workstation from 2007, giving
researchers the advantage to use it in almost any situation without special
hardware requirements. Our simulator allows arbitrary maps of the size of
10,000 km? consisting of more than 1 million obstacles, each with a minimum
size of 1 m?. Up to 1,000 robots, each having a diameter of 25 cm, can move
on it to any continuous position. The simulation runs in discrete time steps
(round based). However, simultaneity is achieved by providing all robots with
updated data from the beginning of a time step.

Using an editor, maps may be created from scratch or with specific pat-
terns (e.g. white noise, fractals). The number of robots as well as their abilities
can be easily configured via an XML file. New strategies can be written in Java
and are then dynamically invoked by the simulator. Moreover, a set of extra
features is accessible to developers like an abstraction of the environment as a
planar graph (for the use of graph algorithms), automatic collision avoidance,
group building or energy management. All the above enables rapid prototyp-
ing. Finally, a real-time visualization allows the user to continuously observe
the whole simulated environment in 2D or 3D. It may run on other computers
to save memory and processor time. Additionally, real-time measurements can
be evaluated, for instance the percentage of the explored map or of collected
treasures. Representations like charts may display these statistics.

3 System Architecture

We developed our simulator on an architecture that includes four main com-
ponents (see Fig. 2 left). As the system’s core, the Kernel coordinates the

4 Holger Hagedorn, Thomas Storm, Henning Wachsmuth et al.

: World
Editor /_\/\/
i X t 7

Controller o [Actuators / Sensors]
Visuali-

1 Services
zation (extendable)

Strategy

(exchangeable)

Fig. 2: Left: Architecture of the system Right: Architecture of a single robot

Robots maintaining all data and the strategy of the single robots (Sect. 3.1).
The Visualization (Sect. 3.2) enables users to keep track of the simulation field
and, finally, the Editor allows comfortable editing of the simulation input.

Inside the Kernel, a Controller executes simulation steps and updates the
data structures for robots, treasures and the terrain (discussed in Sect. 4.1)
with the data emerging from the robots’ actions. Moreover, the Controller is
responsible for establishing and controlling the communication between the
Kernel and the Visualization.

3.1 Robot

The architecture of a single robot (see Fig. 2 right) is based on an unmodifiable
physical unit that interacts with its environment via actuators and sensors.
We thereby simulate the physical conditions of the robot. An exchangeable
strategy controls the robot’s behavior. It has access to a data module stor-
ing all the relevant information and a tactics module providing a predefined,
extendable set of local tactics.

The separation between the robot’s physical unit and its strategy enables
us to guarantee that a robot never acts incorrectly while executing its main
loop. The overall process distinguishes between an evaluation, a goal formation
and an execution stage. At the beginning of each round, every robot receives
messages and perceives information about robots, treasures and obstacles in
its local surroundings. For simplicity reasons, robots are equipped with a 360°
view. After analyzing the data, the robot’s strategy decides whether to pursue
its current goal or to form a new one. Besides, messages may be broadcasted or
sent to specific robots within the communication radius. To allow deterministic
behavior, sending takes uniform time. At last, the elementary action to be
executed next (e.g. “move”) is automatically computed from the current goal.
The physical unit checks whether that action is possible at the robot’s position
and, if not, prevents the robot from behaving wrong.

3.2 Visualization

A 2D and 3D real-time visualization allows the user to easily test strategies
and to observe the robots’ behavior. With its own independent data structures,

Smart Teams: Simulating Large Robotic Swarms in Vast Environments 5

£ Smart Teams Simulator

('Disconnect”Hide visited patthShow explored terrain,

| Explored region Tu -
re. | I ofseleciedob0t) | * " MiniMap)
: o LI b |
1% . Selected Robot o,

= ' d i- I
MultiRobot #080 @ (503,34 | 309,31)

|Current cllpplng "I]

Current goal: exploration

Details of = Last Action: motion (1.0, 135.0)

selected robot Container: 0 / 25

Energy: 98%
- Obstacle dJetaiI View

2D

Fig. 3: The 2D visualization

Round: 154,00

it can be run from a different machine (and connected via RMI) to grant the
actual simulation more memory. Fig. 3 depicts what the 2D visualization
looks like. It allows the user to watch robot-specific data, e.g. the areas a
robot has already seen. A detail view displays information like the last action
of the currently selected robot or the remaining energy. To easily change the
observed region a mini-map can be used, showing the clipping of the map the
user zoomed in. Additionally, the Visualization may display statistical data
on the performance of single or multiple robots as well as global values, e.g.
the percentage of the currently explored map.

4 Efficient structures and methods

We need efficient data structures for representing terrain and robots. Most
importantly, we must give the robots a local view on the map without storing
it multiple times. Sect. 4.1 and 4.2 deal with these topics. We show how to
provide a framework where arbitrary strategies can easily be built (Sect. 4.3).

4.1 Data structures for static and mobile objects

A typical terrain might consist of about a million obstacles. The corresponding
map has to be held in memory as long as the simulation is running. Further,
many range queries have to be answered very fast since each robot requests
the obstacles in its view radius at least once in every round. For this, we
use an implementation of the data structure Region Quadtree (based on [7]).
It “bundles” obstacles not storing each of them separately and, additionally,

6 Holger Hagedorn, Thomas Storm, Henning Wachsmuth et al.

obstacle-free areas occupy no memory. Therefore, its space complexity is very
small in the average case. However, this also results in an approximation of
non-rectangular obstacles by rectangles. Thus, the more winding the obsta-
cles are, the more the possible amount of obstacles is reduced. We modified
the quadtree by adding information to each node on its position and size.
Thus, we can perform fast queries by rapidly deciding whether a subtree has
to be traversed recursively. Given a map with ca. 750,000 quadtree leaves,
distributed in a white-noise-manner, 30,000 random queries take less than a
second on a typical workstation.

To store the large number of robots during the whole simulation in a way
that queries can be answered quickly (e.g. the robots in a robot’s view radius),
we use two data structures, one which maps robot IDs to their corresponding
robot instances and another one which maps the IDs to the robot’s position.
Though the theoretical running time is rather slow, it practically outperforms
more sophisticated approaches.

Storing treasures is even more demanding as there may be much more
treasures than robots. In every round, each robot asks for positions of trea-
sures within its view radius, causing many queries in total. To handle this, a
PRQuadtree is used as proposed in [7]. It allows to store treasures with low
memory usage while keeping the response time for the queries low.

4.2 Maintenance of local maps

A challenging task in the development of the simulator was to find a way of
handling the enormous amount of data resulting from up to 1000 different
local views on the map. To avoid data overhead, we decided to give the robots
direct, though restricted access to the Kernel’s storage of the map.

Every robot only knows the regions of the map already explored by itself,
in general. Therefore, a quadtree is used again that says “1” if a region is
known and “0” otherwise. If a robot needs to have detailed information on
an explored region, the appropriate obstacles are determined from the Ker-
nel’s map in background. The quadtree is efficiently updated after each robot
motion, which may even reduce the memory needed when parts of explored
regions are combined to larger ones. The example of Fig. 4 left supports our
strong conjecture that the needed memory does not increase proportionally to
the simulation time. Besides, it is linear in the number of robots and a single
robot’s need is merely a fraction of the Kernel’s need (Fig. 4 right).

Quadtrees can easily be merged which allows to exchange partial maps via
communication. Moreover, the quadtree helps solving the problem of enabling
the use of graph algorithms (e.g. computing shortest paths). In the preprocess-
ing of the simulation, a planar graph is computed representing possible paths
on the map. Since Robots could only have created a graph based on their
current knowledge, only graph nodes matching the quadtree are accessible.

Robots also have to manage dynamically changing data. That is, treasures
and robots in the view and communication radius may possibly vary each

Smart Teams: Simulating Large Robotic Swarms in Vast Environments 7

round. However, it might, for instance, be useful to remember treasures seen
earlier depending on the chosen strategy. For this purpose we have developed
a scalable list that can efficiently store and update the last n seen treasures
(or robots, respectively) or the treasures (robots) seen in the last m rounds.

Finally, strategies can enable or disable the different components of the
data module with respect to their own needs. For example, an explorer is not
interested in excavating treasures and, therefore, they are neither stored nor
even determined at all. Using this approach, we reduce the amount of stored
data and we decrease the time complexity of the evaluation stage.

4.3 Providing additional services

A strategy is the decision making process of a single robot, that is, an algorithm
to control a robot’s behavior. For instance, an explorer may have the strategy
Explore the Map with Breadth-First-Search. A tactic is, on the contrary, a
local decision or procedure that can be used by any strategy (e.g. the decision
to join a team of robots or to continue moving on the original path).
Strategies and tactics can easily be implemented by deriving a class from
the abstract class Strategy or TacticProvider, respectively. Different interfaces
to control the robot or to obtain information about the environment can then
automatically be used. Some build-in tactics are already available, including

detection and avoidance of collisions with robots and obstacles,

energy management that continually keeps a valid path to securely return
to the home base when energy is low,

automatic navigation along the boundaries of an obstacle,

shortest path calculations in general, and

team behavior with automatic grouping and breaking up.

A new strategy class may be as- | class MyStrategy extends Strategy
signed to one or more robots via // initialize required tactics
an XML configuration file and is | IMovementTactic coll =
dynamically invoked at runtime. tacticMgr.use("CollisionDetection");
Consequently, no changes on the | // for each round
original code are needed. This ap- notifyTactics(); Treasure[] treasures =
plies for tactics as well. On the dynamicData.getTreasuresInViewRadius();
I‘ight is a short code examp]e which if (coll.hasAction()) coll.performAction();
uses all the above mentioned func- | else if (treasures.length > 0)
tions, illustrating the simplicity of actions.move(treasures[0] .getPosition());
implementing research results. else actions.move(0.0, 1.0);

5 Current State and Future Work

The described functionality of our software system is mostly implemented.
However, some parts are still under development. This primarily includes the

8 Holger Hagedorn, Thomas Storm, Henning Wachsmuth et al.

200 -
g’ Robot Dat: g 190
obot Data =
ob g' 100
qE, g 50 - Robot Data
£ £
0 — T T
R T N R N R S
rounds robots

Fig. 4: Memory need for a map with 500,000 quadtree leaves. Left: 100 robots wrt.
the number of rounds. Right: After 50 rounds wrt. the number of robots.

automatic generation of pattern-shaped maps, the 3D visualization and the
measurement framework. We plan to simulate and render a terrain which may
be compared to a Mars scenery or the Monument Valley: it is made up of arbi-
trarily shaped obstacles spread over a flat plane. Obstacles are small rocks and
mesas of different size and topology, each modeled with up to 1000 triangles.
So, for a million obstacles, we have to render up to 1 billion triangles in real
time. We also still continue to develop more sophisticated approaches regard-
ing tactics and basic strategies for robot actions. By now, our data structures
and their related algorithms are able to run a simulation adequately for 1000
robots on maps represented by quadtrees with 1.3 million leaves. Nevertheless,
we still enhance computation times and reduce the needed space since we seek
to cope with even bigger maps. The simulator and further information can be
obtained from the website http://www.upb.de/cs/smartteams.

References

1. T. Balch and A. Ram. Integrating robotics research with javabots. In Working
Notes of the AAAT 1998 Spring Symposium, 1998.

2. C. Dibble and P. G. Feldman. The GeoGraph 3D Computational Laboratory:
Network and Terrain Landscapes for RePast. Journal of Artificial Societies and
Social Simulation, 7(1), 2004.

3. M. Dorigo, E. Tuci, R. Gro; V. Trianni, T. H. Labella, S. Nouyan,
J. L. Deneubourg C. Ampatzis, G. Baldassarre, S. Nolfi, F. Mondada, D. Flo-
reano, and L. M. Gambardella. The SWARM-BOTS Project. In Proc. Swarm
Robotics: SAB 2004, volume 3342 of LNCS, pages 31-44, 2004.

4. B.P. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage Project: Tools for
Multi-Robot and Distributed Sensor Systems. In Proc. International Conference
on Advanced Robotics, pages 317-323, 2003.

5. J. Klein. BREVE: a 3D Environment for the Simulation of Decentralized Systems
and Artifcial Life. Proc. Int. Conf. on Artificial life, pages 329-334, 2002.

6. N. Koenig and A. Howard. Design and Use Paradigms for Gazebo, An Open-
Source Multi-Robot Simulator. In Proc. Intelligent Robots and Systems, pages
2149-2154, 2004.

7. H. Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

