Contents

Chapter 8. Experiments. i 2
E. Berberich, M. Hagen, B. Hiller, H. Moser
L.1Introduction. e 2
1.1.1 Example Scenariosc.oeuuiuuniiniinenninennaan. 2
1.1.2 The Importance of Experiments 4
1.1.3 The Experimentation Process 6
1.2 Planning Experiments i 9
1.2.1 Introductionoo 9
122 Measuresottt 10
1.2.3 Factors and Sampling Points......... 13
1.2.4 Advanced Techniquesiiiiiiiiniiiina., 14
1.3 Test Data Generationot 16
1.3.1 Properties to Have in Mind 16
1.3.2 Three Types of Test Instances o iiiii... 19
1.3.3 What Instances to Use 23
1.4 Test Data Librariest 24
1.4.1 Properties of a Perfect Library 24
1.4.2 The Creation of a Library o ... 26
1.4.3 Maintenance and Update of a Library........................ 27
1.4.4 Examples of Existing Libraries, 28
1.5 Setting-up and Running the Experiment 30
1.5.1Setup-Phase 31
1.5.2 Running-Phase. 37
1.5.3 Supplementary Adviceccoo i 41
1.6 Evaluating Your Data 44
1.6.1 Graphical Analysis i 45
1.6.2 Statistical Analysis i 52
1.6.3 Pitfalls for Data Analysis........ 59
1.7 Reporting Your Results i 60
1.7.1 Principles for Reporting, 60

1.7.2 Presenting Data in Diagrams and Tables 64

Chapter 8. Experiments

Eric Berberich!, Matthias Hagen?*, Benjamin Hiller>**, and Hannes Moser** * *
! Max-Planck-Institut fiir Informatik,
D-66123 Saarbriicken, Germany
eric@mpi-inf.mpg.de
2 Web Technology and Information Systems Group,
Faculty of Media / Media Systems
Bauhaus University Weimar
D—-99423 Weimar, Germany
matthias.hagen@uni-weimar.de
3 Department Optimization, Zuse-Institute Berlin,
D-14195 Berlin-Dahlem, Germany
hiller@zib.de
4 Institut fiir Informatik, Friedrich-Schiller-Universitét Jena,
D-07743 Jena, Germany
hannes.moserQuni-jena.de

1.1 Introduction

Experimentation plays an important role in the Algorithm Engineering cycle. It
is a powerful tool that amends the traditional and established theoretical meth-
ods of algorithm research. Instead of just analyzing the theoretical properties,
experiments allow for estimating the practical performance of algorithms in more
realistic settings. In other fields related to Computer Science, like for instance
Mathematical Programming or Operations Research, experiments have been an
indispensable method from the very beginning. Moreover, the results of system-
atic experimentation may yield new theoretical insights that can be used as a
starting point for the next iteration of the whole Algorithm Engineering cycle.

Thereby, a successful experiment is based on extensive planning, an accurate
selection of test instances, a careful setup and execution of the experiment, and
finally a rigorous analysis and concise presentation of the results. We discuss
these issues in this chapter.

1.1.1 Example Scenarios

In the Algorithm Engineering cycle, experimentation is one of the four main
steps besides design, theoretical analysis, and implementation. There are many
reasons why experiments are that important. We give a few examples here.

* Supported in part by a Landesgraduiertenstipendium Thiiringen.
** Supported by the DFG research group “Algorithms, Structure, Randomness” (Grant
number GR 883/10-3, GR 883/10-4).
*** Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative com-
pression for solving hard network problems), NI 369/5.

1. The analysis shows a bad worst-case behavior, but the algorithm is much
better in practice: The worst-case behavior may be restricted to a small
subset of problem instances. Thus, the algorithm runs faster in (almost) all
practically relevant cases.

2. A theoretically good algorithm is practically irrelevant due to huge constants
hidden in the “big Oh” notation.

3. A promising analysis is invalidated by experiments that show that the the-
oretically good behaviour does not apply to practically relevant problem
instances.

4. A specific algorithm is hard to analyze theoretically. Experimental analysis
might provide important insights into the structure and properties of the
algorithm.

5. Experiments lead to new insights that can be used in the next cycle of the
Algorithm Engineering process.

In the following, we discuss an example for each of these situations in more
detail.

Ezxample 1: Quite often experimenters observe a considerably better running
time behavior of an algorithm than predicted by theory. Thus, the worst-case
behavior is restricted to a very small subset of problem instances. A classic
example is the simplex method for linear programming, whose running time is
exponential in the worst case. However, its practical running time is typically
bounded by a low-degree polynomial [1].

Example 2: In algorithm theory, an algorithm is called efficient if the asymp-
totical running time is small. However, in many cases there exists a hidden
constant factor that makes the algorithm practically useless. An extreme exam-
ple in graph theory is Robertson and Seymour’s algorithm for testing whether
a given graph is a minor of another [52,53]. This algorithm runs in cubic time,
however, the hidden constant is in the order of 10'%°, making the algorithm
completely impractical. Another example of this kind is Bodlaender’s linear-
time algorithm which determines for a given graph and a fixed k whether the
graph has treewidth at most & [6]. Unfortunately, even for very small values of k,
the implemented algorithm would not run in reasonable time. The “big Oh” no-
tation facilitates the design of algorithms that will never get implemented, and
the actual performance of an algorithm is concealed. Moreover, algorithms often
rely on other algorithms in several layers, with the effect that an implementation
would require an enormous effort. Thus, the “big Oh” is in some sense widening
the gap between theory and practice.

Ezxample 3: Moret and Shapiro tested several algorithms for the minimum
spanning tree problem (MINIMUM SPANNING TREE) using advanced algorithm
engineering methods [47]. They analyzed the following algorithms: Kruskal’s,
Prim’s, Cheriton and Tarjan’s, Fredman and Tarjan’s, and Gabow et al.’s. They
tried several different data structures (i. e., different kinds of heaps) and several
variants of each algorithm. Moret gives a concise survey of this work [45]. The
interesting result is that the simplest algorithm (Prim’s) was also the fastest
in their experiments, although it does not have the best running time in the-

ory. The other algorithms are more sophisticated and have better worst-case
asymptotic running time bounds. However, the sophistication does not pay off
for reasonable instance sizes. Moret also stresses the value of algorithm engi-
neering: By studying the details of data structures and algorithms one can refine
the implementation up to the point of drawing entirely new conclusions, which
is a key aspect of algorithm engineering. With this methodology, Moret and
Shapiro’s fastest implementation of Prim’s algorithm got nearly ten times faster
than their first implementation.

Ezxample 4: This example is about algorithms whose theoretical analysis is
extremely difficult, like for instance Simulated Annealing, Genetic Algorithms,
and Union-Find with path compression. Both the analysis of the running time
and of the solution quality is very difficult using existing methods. For instance,
Union-Find with path compression is relatively easy to describe and was known
to yield very efficient behavior. However, its exact characterization took many
years till Tarjan achieved a proof of tight bounds [61]. In such cases, experi-
mental analysis can be a fruitful alternative that yields interesting results more
efficiently.

Example 5: As a last example we want to mention the Traveling Salesman
Problem. In an incremental process, the methods to solve that problem (exactly
or approximately) became more and more sophisticated over the years. Beginning
with a few hundred cities, researchers are now able to solve instances of more
than ten thousand cities [3]. In Section 1.6.1, the Traveling Salesman Problem
is also used as an example of how to analyze results of experiments graphically.

1.1.2 The Importance of Experiments

The examples of the last section showed the importance of experimentation in the
Algorithm Engineering cycle for just a few situations. This section is dedicated
to describe more generally the motivation to conduct experiments. It is based
mainly on several articles and surveys [27,32,43,45].

For the second step of the Algorithm Engineering process, that is, the analysis
of an algorithm, there exist usually three different methods, namely worst-case
analysis, average-case analysis and experimental analysis. The theoretical meth-
ods are more sophisticated than experimental analysis. Since the early days of
Computer Science theoretical analysis and experiments have been used. Com-
puting pioneers such as Floyd and Knuth combined theoretical analysis and
experiments. They used machine-dependent fine-tuning to derive efficient algo-
rithms that performed well both in theory and practice. However, later on the
focus has lain on theoretical analysis, whereas experiments were mainly used in
other fields. From the two ways of analyzing algorithms, only theoretical analysis
developed into a science. Since there is still missing a well-established method-
ology for experimentation, the quality of works in this discipline varies strongly,
and the results are difficult to compare and to reproduce. This disequilibrium
has to be balanced by deliberate experimental analysis.

Recently, the interest in experimental analysis has grown. There are various
reasons for this newly arisen interest. One might be that computer scientists

become aware that theoretical analysis cannot reveal all facets of algorithmic
behavior, especially when concerning real-world applications. Of course many
other reasons, for instance the fact that computational experiments are much
cheaper these days, might have helped too.

This newly arisen interest is also reflected in an increasing number of publi-
cations in the field. Some major contributors are:

— Jon Bentley’s Programming pearls columns in Communications of the ACM
and his Software Ezxploration columns in UNIX Review.

— David Johnson initiated the Annual ACM/SIAM Symposium on Discrete
Algorithms (SODA), which also invites a few experimental studies.

— The ACM Journal of Experimental Algorithmics (ACM JEA) was initiated
to give a proper outlet for publications in the field of computational experi-
ments.

— The FEngineering and Applications Track at the Furopean Symposium on
Algorithms (ESA), which was formerly known as Workshop on Algorithm
Engineering (WAE).

— The Workshop on Algorithm Engineering and Experiments (ALENEX).

— The International Symposium on Exzperimental Algorithms (SEA), which
was formerly known as Workshop on Experimental Algorithms (WEA).

Compared to theoretical analysis, experimentation in Computer Science is
still in the “fledgling stages.” In other (natural) sciences, like for instance physics,
theories are completely based on experiments. Scientists have developed mature
methods to derive meaningful results out of experimentation (mature in the
sense that they have been revised and approved many times). Computer science
lacks such well-established methods, which are generally accepted as a standard
for empirical studies by the community. Obviously, Computer Science differs in
many ways from other natural sciences. For instance, on the one hand in natural
science the results of theories are compared to a golden standard (the nature).
On the other hand, in Computer Science we just report results or compare them
with another experiment of the same type. Moreover, Computer Science is much
easier to understand: In principle, we could derive nearly any information about a
given program by profound analysis. In Computer Science, unlike other natural
sciences, we know — at least in principle — the underlying mechanisms, like
for instance source code, compilers, and computer architecture, that yield our
results. But unfortunately, the processes we observe are by far too complex to
be understood easily.

Therefore, like in other sciences, we need an empirical science of algorithms
to be able to invent evidence-based explanatory theories. Certainly, this does
not mean that theoretical Computer Science will become obsolete. There is ab-
solutely no reason to abandon theoretical analysis, as it has proved to serve
perfectly to draw many important conclusions, to gain a deeper insight into
problems and to help to design new data structures and algorithms. However,
theoretical analysis should be supplemented with experimentation, which is ex-
actly the goal of the whole cyclic process of Algorithm Engineering.

With this approach, we would hopefully narrow the big gap between theory
and practice, helping people to benefit more directly from the deep understand-
ing of problems and algorithms gained by theory. Since experimental work is
often considered not worthwhile and rejected by theorists, it is important to
stress that empirical science is not the opposite of theory (e.g., quantum elec-
trodynamics shows that an empirical science can be rather theoretical), at least
when it would be evolving to a real science. We think that mainly the deficiency
of unassailable and clean scientific experimental work and research principles are
the cause for the lack of major success of experiments in algorithmics. In this
chapter we give an overview of approaches that aim to resolve these problems.

1.1.3 The Experimentation Process

The task of experimentation is to answer a formulated hypothesis or a question
using meaningful test data that has been obtained by some reproducible pro-
cess, the experiment. Reproducibility here means that the experiment can be
repeated, yielding qualitatively the same results and conclusions. A research ex-
periment should have a purpose, be stated and defined clearly prior to the actual
testing, and, of course, it is important to state the reason why experimentation
is required.

The experimenter has great latitude in selecting the problems and algorithms.
He has to decide how to implement the algorithm (see Chapter 6), to choose
the computing environment, to select the performance measures, and he has to
set the algorithm options. Furthermore, he is responsible for generating a good
report which presents the results in an appropriate way. These choices can have a
significant effect on the results, the quality, and the usefulness of the experiment
as a whole. Therefore, the experimenter has to plan his experiments with care.
He should document all decisions such that the experiment can be reproduced
at any time. In order to improve the quality of experiments, the planning should
be done following some systematics.

In the literature (i.e., [4,45]), experimentation is a process whose steps can
be described as follows.

Define the goals of the experiment (Section 1.2).

Choose the measures of performance and factors to explore (Section 1.2).
Choose a good set of test instances (Sections 1.3 and 1.4).

Implement and execute the experiment (Section 1.5).

Analyze the data and draw conclusions (Section 1.6, see also Chapter 4).
Report the experiment’s results (Section 1.7).

A

Note that this process is in almost every case an iterative process, meaning
that it might be necessary to go back to some earlier step to revise some of the
decisions made earlier. The process is often also incremental in the sense that the
results motivate further experiments to answer new questions. In the following
we shortly describe what an experimenter should consider in each step. Then,
each step will be described in more detail in the corresponding sections of this
chapter.

Define the goals of the experiment. There are manifold types of experi-
ments, having its seeds in different motivations. At first, the researcher has
to find out which type of experiment is needed. Depending on that type, the
experiment and the presentation of the results have to be adapted properly.
For that reason it is always helpful to define primary goals for the experiment.
These goals should always be kept in mind during the whole experimentation
process. Another important question in the first step is the newsworthiness
of the experiment, that is, whether the results are interesting and whether
they have the potential to lead to new valuable insights. We discuss these
issues briefly in Section 1.2.1, where we also shortly subsume literature we
consider worth reading.

Choose the measures of performance and factors to explore. Depending

on the problem and the type of experiment, the experimenter has to select
the measures (e.g., running time) that are suited for a good understanding
of underlying processes of the algorithm and that describe its performance
at its best. We discuss how to find good measures, and we present some
standard measures as well as other important alternatives in Section 1.2.2.
With the measures we are also facing the task of obtaining their values.
Several techniques exist to improve data quality as well as the speed of the
experiment, which we discuss in Section 1.2.4.
Another important question of the second step is the choice of the factors,
that is, choosing the properties of the experimental environment or setup
that influence the result of the experiment (e.g., the input size). Some fac-
tors have a major influence on the measures, others are less important. The
experimenter’s task is to choose the factors that permit to analyze the algo-
rithm as good as possible. This task is described in Section 1.2.3.

Choose a good set of test instances. The test instances used in algorithmic

experiments directly affect the observed behavior of the tested algorithms.
After characterizing some fundamental properties that should influence the
choice of test instances in Section 1.3.1 we identify three different types of test
instances used in most experiments. We analyze their respective strengths
and weaknesses in Section 1.3.2 before giving some final suggestions on how
to choose good test instances in Section 1.3.3.
For many problems collections of test instances are already available on the
Internet. We call such collections test data libraries and describe properties
of a perfect library in Section 1.4.1. The issues arising in the context of
creating and maintaining a library are discussed in Sections 1.4.2 and 1.4.3.
A brief compendium of existing libraries follows in Section 1.4.4.

Implement and execute the experiment. Executing the experiments seems
to be a trivial task, since the computer actually does the job. If done without
care, the obtained results are just useless.

Section 1.5.1 explains what to consider when setting-up the laboratory, so
that the experimenter can work in a nice and clean environment that elimi-
nates systematic errors. The actual work in experimentation is done by the
computer. It runs all experiments, but the human operator has also some

tasks. Section 1.5.2 gives advice on how to make the running phase simple
without losing information or introducing new errors.

Analyze the data and draw conclusions. The data generated by the exper-
iment needs to be analyzed carefully in order to draw sound conclusions. In
Section 1.6.1 we give advice on how to employ graphical methods to analyze
the data. The focus is on using diagrams to reveal information that might
not be obvious.

Section 1.6.2 complements this rather informal approach with an overview on
using statistical methods for data analysis. We start giving a brief overview
on the basic concept of a hypothesis test as a major statistical tool. Instead
of going into further details of statistical analysis, we rather try to capture
general ideas of using it in the context of algorithm analysis by describing
studies and results found in the literature. The goal is to provide an overview
and to somehow give the flavor of the methods.

For the more general question of how to use experiments in order to analyze
the asymptotic running time of algorithms we refer to Chapter 4, especially
to Section 4.8. One general suggestion (made in Section 4.8.1) is to make
use of the scientific method (known from the natural sciences), that is, to
combine theoretical deductive reasoning and experimental analysis to reach
the best possible overall result. But apart from that, Section 4.8.2 describes
and preliminarily assesses a specific approach to finding hypotheses on the
asymptotic running time of algorithms by pure analysis of experimental data.

Report the experiment’s results. Proper reporting of the results and the
details of the experiment is very important for a good experimental study.
Too many papers reporting experimental results have failed to achieve the
main requirement for a good experiment: Being reproducible for doing fur-
ther research. Section 1.7 deals with good practices for proper reporting and
mentions pitfalls and problems to watch out for. We also give some hints on
how to make the best out of diagrams and tables, in order to substantiate
the claims and findings of the experiment.

Here we give some publications we consider worth and important to read before
getting started.

Moret’s paper [45] is a good starting point. It generally describes existing ex-
perimental work and briefly sketches the whole experimentation process from the
planning to the presentation of the results. A more comprehensive work is John-
son’s paper, which principally addresses theorists [32]. It describes how to write
good papers on experiments, and it includes many recommendations, examples,
and common mistakes in the experimentation process. Another recommendable
paper from Hooker motivates experimentation in general [27]. It highlights the
advantages of experimentation, states with which kind of prejudice it is often
confronted. Furthermore, Hooker gives a nice comparison with natural sciences,
and he presents some examples where experimentation is successfully applied.
The paper by Barr et al. focuses on experiments with heuristic methods [4].
However, people from other areas might also find some interesting aspects and
observations in this paper. McGeoch’s paper [40] mainly concerns the questions

of how to obtain good data from experimentation and how to accelerate exper-
iments significantly. She proposes the use of variance reduction techniques and
simulation speedups.

Each of these publications describes experimental work from a slightly dif-
ferent point of view, however, the authors basically agree in their description of
the experimentation process in general.

1.2 Planning Experiments

This section describes the test planning, what an experimenter should think
about before implementing the algorithm and starting to collect data. The plan-
ning of an experiment is a challenging process that takes a considerable amount
of time. However, a careful plan of the experiment prevents many types of severe
problems in later steps of the experiment. Planning is a necessary requirement
in order to do high quality experimental research.

1.2.1 Introduction

First of all, we have to think about the motivation to perform an experiment.
There are many reasons to conduct experimental research. In the literature we
can find many different types of experiments with diverse motivations [32, 45,
4]. Depending on what an experimenter is trying to show, the corresponding
experiment and the report of its results have to be adapted properly. There is a
wide range of possible goals of an experiment, the following list states a few.

— Show the superiority of an algorithm compared with the existing ones.

— Show the relevance of an algorithm for a specific application.

— Compare the performance of competing algorithms.

— Improve existing algorithms.

Show that an existing algorithm performs surprisingly bad.

— Analyze an algorithm/problem to better understand it (experimental anal-
ysis).

Support /reject /refine conjectures on problems and algorithms.

— Checking for correctness, quality, and robustness of an algorithm.

— Develop refined models and optimization criteria.

In the planning step we have to define a clear set of objectives, like questions we
are asking and statements we want to verify.

Another important part of that planning step is to verify the newsworthiness
of the experiment. That is, whether the experiment would actually give us inter-
esting new insights. One way to achieve newsworthiness is to answer interesting
questions on a sound basis, going beyond pure running time comparison. We
give a few examples:

— Does the performance of several algorithms for the same problem differ and
do some of the algorithms clearly dominate the others? (Statistics can help
here.)

10

— Does dominance hold for all instances or only for some subset? If so, what
are the structural properties of this subset?

— What are the reasons for dominance (e.g., structural properties of inputs,
comparison of operation counts for critical operations)?

— How much does each phase of the algorithm contribute to the running
time/performance of the algorithm?

These questions cannot be answered quickly. They have to be considered in the
whole experimentation process.

1.2.2 Measures

By a measure of performance we generally mean quantities related to the algo-
rithm and obtained by the execution of the experiment. There are several widely
used measures that are quasi standard. However, each measure has its advan-
tages and disadvantages. Thus, the correct choice of an appropriate measure can
be crucial for a good understanding and analysis of the experiment.

In the first part of this section, we describe several well-known as well as some
more exotic measures that appeared in literature. Then, we briefly describe how
to generally find good measures.

Three measures are used in almost any publication about experimental algo-
rithms:

— running time
— space consumption
— value/quality of the solution (heuristics and approximation algorithms)

Depending on the type of experiment, at least one of these measures is a must-
have. However, these popular measures should not be used solely. The first two
measures highly depend on the chosen programming language, compiler, and
computer (processor, cache, memory, ...), and therefore the results are very
difficult to generalize and to compare. Furthermore, they depend on the imple-
mentation style and the skill of the programmer. Therefore, some investigators
therefore assure that all crucial parts are implemented by the same programmer,
e.g., as described in [45]. Running times in particular are problematic when they
are very small. Because the system clock’s granularity cannot be chosen arbi-
trarily, we get distorted results. However, this can be resolved by several runs
with the same input data set. The choice of the test instances, as described in
Section 1.3, also has a strong influence, especially on the value/quality of the
solution in the case of heuristics.

Most notably, it is very unlikely that a good understanding of the problem
and the algorithm emerges from these measures. They are aggregate measures
that do not reveal much about the algorithm’s behavior (for instance, we can-
not discover bottleneck operations, which are fundamental operations that are
performed repeatedly by the algorithm and influence the running time at most).

11

We need other measures in order to gain a deeper understanding of the
algorithms to test. Moret recommends to “always look beyond the obvious mea-
sures” [45]. In the following we describe some other measures that appear in
literature (see, e.g., [1,4,45]).

Extensions of running time First of all, it is sometimes useful to extend the
notion of running time. For instance, in the case of heuristics, we might mea-
sure the time to find the best-found solution, that is, the time required to
find the solution that is used to analyze the quality of the heuristics. More-
over, there exists a difference between the time that is required to produce
the best-found solution and the total time of the run that produced it. In
the case of heuristics that are multi-phase or composite (i. e., initial solution,
improved solution, final solution), the time and the improvement of quality
in each phase [4] should be measured, too.

Structural measures For a good understanding of the algorithm we need
structural measures of various kinds (e.g., number of iterations, number
of calls to a crucial subroutine, memory references, number of comparisons,
data moves, the number of nodes in a search tree). Several publications rec-
ommend the use of memory references (mems) as a structural substitute for
running time [1,34,45]. But other measures, like for instance the number of
comparisons, the number of data moves (e.g., for sorting algorithms), and
the number of assignments, should be considered as well, depending on the
algorithm to be analyzed.

Bottleneck operation counts The idea of counting the number of calls to a
crucial subroutine, or to count the number of executions of a major sub-
task, leads to the general concept of asymptotic bottleneck operation. We
call an operation an asymptotic nonbottleneck operation if its fraction in the
computation time becomes smaller and approaches zero as the problem size
increases. Otherwise, we call the operation an asymptotic bottleneck opera-
tion. In general, there exists no formal method for determining asymptotic
bottleneck operations, since an algorithm might behave completely different
for small instances than for sufficiently large instances. However, it seems to
be a quite useful approach in practice [1]. Bottleneck Operation Counts are
also often used when comparing heuristic optimization algorithms. In this
case, the evaluation of the fitness function is often the bottleneck when run-
ning the algorithm on real-world problems. For a more detailed description
we refer to Chapter 4.

Virtual running time Ahuja et al. advocate the use of virtual running time [1].
The virtual running time is an estimate of the running time under the as-
sumption that the running time depends linearly on “representative opera-
tions” (potential bottleneck operations). The loss of accuracy, that is, the
estimate of the running time compared with the actual running time, can be
remarkably small. Ahuja et al. present case studies with a difference of at
most 7%, in many cases below 3%. Virtual running time can be used to de-
tect asymptotic bottleneck operations, it is particularly well-suited for tests
on various systems, and it permits us to eliminate the effects of paging and

12

caching in determining the running times. We refer the reader to Chapter 4
for a more detailed description of this notion.

Finally, we want to describe some notions that are not measures in the strong
sense, but considered as such in some publications since their impact is generally
underestimated by many experimenters.

The first “measure” of this kind is robustness. If an algorithm performs well
or the computed solution has a good quality only for a few problem instances
it is evidently not very interesting in a general setting. Therefore, an algorithm
should perform well over a wide range of test instances. For instance, one could
measure the number of solved instances of a benchmark library of hard instances
in order to estimate the robustness of an algorithm. The second “measure” we
want to mention is the ease of implementation. There are many examples of
algorithms that have been selected for use in practice just because they are easy
to implement and understand, although better (but more complicated) alterna-
tives exist. Not only the running time is important, but also the time needed
for the implementation of the algorithm. Especially if the running time is not a
crucial factor, the ease of implementation (e. g., expressed in lines of code, or by
estimating the man-months needed for an implementation) can be an important
argument in favor of some algorithm. Note that the ease of implementation de-
pends highly on the underlying programming language, programming tools, and
the style of the programmer, among many other influences. The third “measure”
to mention is scalability, which basically means that algorithms can deal with
small as well as large data sets. Obviously, these “measures” cannot be deter-
mined very exactly, but even a very rough estimate can help to better classify
the algorithm in question. However, it is important to stress that these “mea-
sures” are limited and therefore they should be applied with care. Note that
these “measures” are also presented as design goals in Chapter 3.

As stated before, good measures that help understanding an algorithm are
usually not the most obvious ones. Therefore, we briefly discuss how to find
such good measures in practice. Several authors give various hints on this issue,
for instance, Johnson states a nice list of questions to ask in order to find the
right measures [32]. At the beginning, it is recommended to do research sub-
sumed as exploratory experimentation. One of the first experiments could be
to observe how the running time of the algorithm is affected by implementa-
tion details, parameter settings, heuristics, data structure choices, instance size,
instance structure, and so forth. Furthermore, we might check if a correlation
between running time and the count of some operations exists. Then, we try to
find out the bottlenecks of the algorithm. It is also interesting to see how the
running time depends on the machine architecture (processor, cache, memory,
...), and how the algorithm performs compared with its competitors. Obviously,
these experiments should be conducted with other (standard) measures as well
(e. g., replace “running time” with “space consumption” in the above description).
Profilers can and should be used to quickly find good structural measures.

In general, a look should be taken at data representing differences as well as
ratios. Furthermore, one should use measures that have small variance within a

13

sampling point (which will be defined in the following section) as compared to
the variance observed between different sampling points [4].

1.2.3 Factors and Sampling Points

The factors of an experiment comprise every property of the experimental en-
vironment or setup that influences the result of the experiment (i.e., the mea-
sures) [4]. The most obvious factors are the parameters of the algorithm, but
we also consider other influences as, for instance, the computing environment.
The experimenter has to find out which factors have a major influence on the
measures. He has to define what to do with other factors that are not important
or cannot be controlled. Factors generally can be expressed by some value, for in-
stance the processor speed, the memory usage, or the value of some configuration
variable for an algorithm. We refer to such values as a level of a factor [4]. For
a run of an algorithm we have to define a sampling point, that is, we have to fix
the factors at some level. The experimenter has to define which sampling points
will be considered in the experiment, and how many runs should be performed
for each sampling point.

By applying some preliminary tests, we can find out which factors actually do
have a major influence, as for instance the input size, the number of iterations for
an approximation algorithm, threshold levels, algorithms to solve subproblems
(e.g., sorting and data structures), characteristics of the test instances, and the
machine architecture. Among these, the experimenter has to pick out the ones
he is interested in. These factors will possibly be altered during the experimental
analysis to set up new experiments. For such factors, we have to decide which
levels should be selected. This decision depends highly on the purpose of the
experiment and the questions that are asked. The levels are the specific types or
amounts that will be used in each run. For instance, if the factor is quantitative,
then we have to choose the values we consider and how they are spaced (e. g., the
selected levels of the factor “input size” could be 10,102,10%,10%,...). Note that
qualitative factors make sense as well. For instance, to classify test instances as
small, medium size, or big, or to choose a certain type of data structure (e.g.,
binary tree, hash), or looking at boolean values (e. g., optimization on or off).

Other factors might not be interesting for the experimenter. In this case,
he has to fix them on a certain level for all runs. Obviously, a good reason for
choosing a certain level must exist. For instance, the factor “main memory” could
be fixed at 1024 MB, but this is only reasonable if there is evidence that the
memory usage of the tested algorithm will never even get close to that amount.

Finally, some factors might exist that are ignored, because we assume them
not to influence the outcome or having a sufficiently low influence. Of course,
there must be evidence for this assumption. For instance, if we measure the run-
ning time by looking at the processor time of the algorithm, and if one factor
is the “user load” of the machine on which we perform the experiment, then we
might ignore the user load because we trust in the operating system that the
measured processor time is computed correctly. Other factors that have to be
ignored out of necessity are factors that we do not understand or cannot control.

14

For instance, such a factor could be the total load of the machine where the ex-
periment is performed. Even if we assure that no other important processes are
running, the necessary operating system’s processes themselves cannot be con-
trolled that easily. Especially for such factors, it is recommended to randomize
them if possible, in order to keep an undesired influence as low as possible [42].
The process of finding good factors can take quite some time, and it is impor-
tant to document the whole process. The finding of good factors is also part
of the running phase of the experiment, which is described in more detail in
Section 1.5.2.

For each run of the experiment a sampling point has to be chosen. With
the number of factors that have to be altered the number of possible sampling
points increases, since in theory we could try all possible combinations of factor
levels. In most settings, this number is by far too high in order to perform an
experiment for every possible sampling point. Therefore, the experimenter has
to select a reasonable number of sampling points that reflect the overall behavior
of the tested algorithm as good as possible. In order to decrease the variance of
the test data, the experimenter also has to consider that the experiment should
possibly be run several times for the same sampling point (see also Sections 1.2.4
and 1.6.2). With a good and elaborated prior selection of sampling points (by
always having the primary goals of the experiment in mind), the experimenter
can avoid many useless experiments that use up expensive resources. Further-
more, it can be avoided to have experiments run again in a later step, because
it became clear in the analysis that the used sampling points were not adequate
or sufficient.

Finally, we want to mention a comprehensive approach for experimental de-
sign called DOE (Design Of Experiments), which especially deals with the careful
design of experiments and the choice of factors and sampling points in order to
allow a sound subsequent statistical analysis [4, p. 20]. For more information
about DOE we refer to Section 1.6.2.

1.2.4 Advanced Techniques

In this section we briefly explain advanced methods that should be considered
when planning an experiment, like for instance simulation [38,40,42,41,49], sim-
ulation speedup as well as variance reduction techniques [40]. They have the goal
to improve the process of obtaining experimental data. In a nutshell, simulation
speedup deals with the question of how to speed up the process of obtaining
data, i.e., how to make the test runs faster. With faster test runs, we can obtain
more data in less time, helping us to decrease the variance notably. However,
not only simulation speedup can reduce variance, but other more sophisticated
techniques for this purpose exist. Conversely, a reduced variance admits fewer
test runs, thus, speeding up the entire process of gathering data. Note that these
techniques are not a luxury additive in test design. Often, much improvement
may be needed for the data to be useful.

A common paradigm in simulation research is to differentiate between a
real-world process (e.g., an economic system, weather, public transport) and a

15

mathematical model of such a process, to predict its future behavior in reality.
For the purposes of algorithm design, the real-world process is an application
program running in a particular computing environment, whereas the mathe-
matical model is the underlying algorithm. If the algorithm cannot be analyzed
sufficiently, then a simulation program is developed, which may be identical with
the application program. Not all researchers make this distinction, as well as we
did not mention it before this point. However, this point of view is useful to
explain the following techniques.

Usually, we have to deal with measures that are influenced by random noise.
Thus, we get different numerical values for each test run. In order to get a
reliable value for the measure, we repeat the test run several times and compute
the mean value over all test runs. However, for measures with high variance (or
“spread”), we need a high number of runs in order to get a reliable mean value
with low deviation. In the following we outline several known approaches to
reduce variance, where only the intuitive idea behind each technique is described.
More exact mathematical descriptions of these techniques can be found in the
literature (e. g., [40]).

Common Random Numbers This technique should be considered when com-
paring two algorithms on randomly generated instances and we expect that
the compared measure is positively related with respect to the input in-
stances. The idea is to use the same random instance for each test run of
the two algorithms, which is equivalent to generate the instance from the
same random numbers, hence the name. Since the measure is assumed to be
positively related, the variance of the difference of the measures of the two
test runs for each random instance is expected to be lower than the variance
of the measure of each algorithm separately. A positive side effect of this
technique is that we have to compute only half the number of test instances
compared to the situation where we generate a random instance for each
algorithm separately.

Control Variates If there are two measures of the same algorithm that are
positively correlated, then we can make use of this technique to decrease
the variance of one such measure. Suppose that the running time and the
memory usage of an algorithm correlate positively, i. e., the algorithm needs
more memory if it is running for a longer time. For each test run, we compute
the difference between the mean value of the memory usage and the memory
usage observed in that run. Due to the positive correlation, we can use this
difference to “correct” the value of the running time for that test run. This
method provably reduces the variance of the running time values.

Antithetic Variates The idea behind this technique is simple: If we have two
measures that have the same distribution, but are negatively correlated, then
the sum of these two measures has a lower variance. Namely, if the difference
between the first measure and its mean is positive, then the difference be-
tween the second measure and its mean is likely to be negative. Thus the sum
of both measures compensates the deviation of each measure, and therefore
the “sum measure” has a reduced variance.

16

Conditional Expectation This technique is sometimes also called “Condi-
tional Monte Carlo” or “Conditional Mean”. Suppose we have two measures,
for which we know that the mean of the first measure is a function of the
mean of the second measure. For each test run, rather than obtaining the
first measure directly, we can also take the second measure and then compute
the corresponding value of the first using the known function. This method
works if the variance of the second measure is smaller than the variance of
the first measure.

These were just four important techniques that are most likely to be generally
applicable. In literature, many other techniques of this type can be found.

Next, we address simulation speedup. Until now, the idea was to implement
an algorithm and then perform the tests directly on it. The key idea of simula-
tion speedup is to partially simulate the algorithm. Because sometimes it is not
necessary to implement it as a whole, we might skip parts of the implementation
and replace them by a simulation. This is more efficient due to knowledge which
the implemented algorithm would not have.

Variance reduction and simulation speedup are closely related. With simu-
lation speedup, we are automatically able to reduce variance, as the improved
efficiency permits us to take more trials within the same amount of time. Con-
versely, a smaller variance implies that less trials are needed. Thus, the overall
running time decreases. McGeoch [40] gives several examples of algorithms to
which these techniques have been successfully applied.

1.3 Test Data Generation

When evaluating algorithms experimentally, the experimenter usually runs the
algorithms on several test instances while measuring interesting values. Obvi-
ously, the used test instances may substantially affect the observed behavior of
the algorithms. Only a good choice of test instances can result in meaningful
conclusions drawn from the respective algorithmic experiment. Hence, the de-
cision what test instances to use is one of the crucial points in test design (cf.
Section 1.1.3). Due to its importance we address the problem in more detail here.

The outline of this section is as follows. Section 1.3.1 contains basic properties
that every experimenter should try to accomplish when choosing test instances.
We introduce three different types of test instances in Section 1.3.2 and ana-
lyze their respective strengths and weaknesses. Section 1.3.3 contains some final
suggestions for test data generation.

1.3.1 Properties to Have in Mind

There is a wide agreement in the literature that choosing test instances is a
difficult task since any choice of test instances allows for criticism. But there is
also a wide agreement on some basic, potentially overlapping, properties that
an experimenter should have in mind while selecting test instances. Note that

17

the properties are not only important for the test instance selection, but for the
whole experimental process in general. If the selection of test instances helps
to achieve the properties, the result is most likely a good set of test instances.
We compiled the following list using the corresponding discussions in several
articles [4,9,10,22,27,28, 30,32, 39,41, 45, 46, 50].

Comparability The results of algorithmic experiments should be comparable
to other experiments. While this should be taken for granted, there are lots
of algorithmic experiments ignoring it.

If different tests in a paper use test instances with different characteristics,
it is mostly not valid to compare the measurements. There may be some
occasional exceptions, but more often the comparisons are meaningless and
cannot reveal anything. However, Comparability should not only hold in one
paper, it is also desirable for experiments from different authors.

Today, the standard solution to assure Comparability is to make the in-
stances or their generator programs available on the Internet. To ensure
that other researchers can use the instances it is advisable to use a widely
accepted format to store them. If the publicly availabe instances are included
in new experiments, they ensure comparability to already published studies
using the same instances. The potential abuse that other researchers might
optimize their algorithms exactly for these instances is made harder if the
experiments include lots of varied enough instances (cf. Quantity and Variety
below).

In the phase of test design, Comparability means to be aware of standard
test data libraries (cf. Section 1.4) and instances used in former experiments
on similar algorithms.

Measurability For heuristics it is often tested how far from an optimal solution

the heuristic’s solution of a test instance is. Hence, it is desirable to be able
to measure the optimal solution in advance.
Unfortunately, nontrivial instances with known solutions are often very small
or too much effort must be spent on measuring an optimal solution, e.g.,
for NP-hard problems. However, problem generators can construct artificial
instances with a built-in optimal solution that is known in advance [35]. But
one has to be aware that such a generation process may yield quite unrealistic
problem instances (cf. the discussion on artificial instances in Section 1.3.2).
Furthermore, for NP-hard problems it is very unlikely to be able to efficiently
generate meaningful instances with known solutions [54].

Portability In the early days of algorithmic experiments the large and bulky
data of some non-trivial examples caused Portability problems. Such in-
stances were too large to be published in journals. Researchers could only
obtain them by depending on the cooperation of others that had previously
used the same instances.

Today, with the availability of many instances on the Internet there are two
main sources of Portability problems. One arises when proprietary consider-
ations preclude the supply of the test instances. One should try to exclude
such proprietary test instances from experiments since they clearly degrade

18

the above mentioned Comparability. However, there are also circumstances,
e.g., in VLSI-design, where it is impossible not to use proprietary instances
in the experiment.

Another possible source of Portability problems is the format in which the
instances are stored. Using a widely accepted or some standard format helps
to exchange instances with other researchers. The main reason is that such a
standard usually is well-documented and everyone knows how to decode it.
There already exist common standards for some areas, like the cnf-format
for SAT-instances (cf. Section 1.4.4). These standards are mostly a special
ASCII or even binary encoding of the instances.

If there is no common format at hand, the experimenter has to choose one
considering some important points. First, the instances have to be stored in
a way such that everyone can convert them quite simply to another format.
This means that the format itself has to be documented by the inventer.
Furthermore, the format should avoid redundancies, it should be extensi-
ble, there should be an efficient decoding routine, and storing the instances
should not need too much memory. In some situations (cf. the CSPLib in
Section 1.4.4), even a human readable format may have advantages. Another
option is to use XML. But keep in mind that XML is not designed for the pur-
pose of storing test instances. Hence, usage of XML as an instance format is
really rare up to now.

Purpose Some studies do not explicitly consider the Purpose of the experiment
when choosing test instances. An example would be to keep in mind whether
the experiment should show the potential of an algorithm (where lots of
different instances are needed) or just the practicality of an algorithm in
specific situations (where more restricted instances have to be chosen). The
used test instances should always match the Purpose of the experiment.

Quantity The number of test instances to use depends on the goals of the ex-
periment. Preliminary testing to show feasibility requires only a small num-
ber of instances. However, the experiments we have in mind are of another
kind. To assess strengths and weaknesses of an algorithm or to compare it
against other approaches requires large-scale testing in terms of the number
of instances used. Choosing many instances helps to protect being fooled by
peculiar experiences with few instances and yields more informative studies.
Unfortunately, in many studies the set of test instances is too small com-
pared to the total range of potential instances. Hence, the drawn conclusions
tend to be meaningless.

Reproducibility When algorithmic experiments are reported, the test instances
have to be given in enough detail that another researcher could at least in
principle reproduce the results. If the instances were obtained by using a
generator, it usually suffices to give the settings of the important param-
eters of the generator and the seed of a potentially used random number
generator. Nevertheless, generated instances with unique properties that are
difficult to reproduce should be given as precise instances. This corresponds
with Comparability from above since making the instances publicly available
also supports Reproducibility.

19

Although Reproducibility is widely acknowledged to be important, a lot of
published experiments are not really reproducible. One of the main reasons,
besides the ignorance of some experimenters, might be the problem of pro-
prietary test instances not available to the public.

Significance To ensure Significance of an experiment, instances from widely
accepted test data libraries should be included, which also corresponds to
Comparability. Of further interest are instances that test the limits of the
algorithm or even cause it to fail. Too easy instances reveal little on an
algorithms behavior on hard instances. Hence, one key to ensure Significance
is the Quantity and Variety of the test instances. However, it is a challenge to
generate meaningful test instances, especially for the assessment of heuristics.
The experimenter often has to trade off the need for the sample of instances
to be representative and the cost of obtaining the instances.

Unbiasedness Unintended biases should not be introduced into the test in-
stances used. One such example would be to use only instances that the
tested algorithm can easily solve. The potential conclusion that the algo-
rithm solves all instances very fast is heavily biased by the choice of in-
stances. Hence, observance of Quantity, Significance and Variety helps to be
unbiased in the problem selection.

Another source of biases can be encountered in the generation process of
potentially used artificial instances (cf. Section 1.3.2).

Variety The test instances used in an experiment should have different char-
acteristics to show how algorithmic performance is affected. But in many
studies the instances have been too simple and too limited in scope, e.g.,
when only few instances of small size are used to demonstrate sometimes
pathological algorithmic behavior. Instances that are too easy do not allow
for good conclusions. Large-scale testing, in terms of the range of the in-
stance sizes and the variety of instance properties, is required since this is
the only way to reflect the diversity of factors that could be encountered.
Demonstrating the potential and the usefulness of an algorithm also requires
a wide Variety of test instances since otherwise the strengths and weaknesses
cannot be assessed accordingly. However, if the scope is to show practical-
ity in specific situations, much more restrictive sets are allowed. Again, the
above mentioned Purpose of the experiment is crucial for the decision.

1.3.2 Three Types of Test Instances

Roughly, there are three different types of test instances an experimenter could
use. Namely, these are real-world instances, artificial instances, and perturbed
real-world instances. In this section we assess their respective strengths and
weaknesses according to the properties discussed in Section 1.3.1.

Real-World Instances Real-world instances originate from real applications.
In this way they are actual examples and mostly reflect the ultimate Purpose of

20

any tested algorithm. Several authors have already discussed the usage of real-
world instances [4,9,10, 19,25, 22,30,32,45,50]. In the following, we give a brief
survey of their observations.

The property of being representative for real-world behavior is one of the
main reasons that real-world instances should be used in algorithmic experi-
ments whenever possible. Very often, the goal of an algorithmic experiment is
to evaluate practical usefulness. Then, real-world instances cannot be excluded
from the experiment since they allow an accurate assessment of the practical
usefulness of any tested algorithm.

However, in the early days of algorithmic experiments real-world instances
usually where handpicked. Hence, the collection and documentation was quite
expensive. Today these problems do not carry that much weight since most test
data libraries (cf. Section 1.4) already include real-world instances and are easily
available on the Internet. Real-world instances that are used in well-documented
experiments usually make their way into such a library. Nevertheless, real-world
instances may have a proprietary nature and thus may not be available for public
use. This causes Comparability problems.

Another more serious problem with the usage of real-world instances is that
it is often difficult or even impossible to obtain a sufficient number of large
enough instances. Small instances can be solved too fast on current machines
such that the running times shrink to negligibility. Hence, there often are troubles
in achieving Quantity and Variety just using real-world instances. But even if
real-world instances would be available in large enough Quantity and Variety
they usually to not allow to draw general conclusions about how an algorithm
operates. The main reason is that typically instance properties cannot be isolated
in real-world instances. However, this is necessary to show how changing several
properties affects the performance. Before we describe a possible way to overcome
these issues by using artificial instances, we close with a short summary of the
main advantages and disadvantages of real-world instances.

Advantages Disadvantages
— representative of real-world — only of bounded size (Variety)
behavior (Purpose) — only few available (Quantity)
— allow assessment of practi- — sometimes proprietary (Comparability)
cal usefulness — lack of control of characteristics

Artificial Instances Usually, artificial instances are randomly generated by
a generator program given a list of parameters. One of the earliest examples
is NETGEN which generates network problem instances [33]. Using artificial
instances is a possibility to overcome the main disadvantages of real-world in-
stances. Hence, they were already studied by other authors [4,9,10,21,22, 25,28,
30,32,39,45,48,50]. We compiled our following discussion from these papers.
The usage of generator programs ensures the fast and cheap availability of a
very large Quantity of instances. If the generator program is well-written, one
key property is that it can provide arbitrarily large instances which assists Va-

21

riety. This allows the experimenter to determine the size of a biggest instance
that can be solved in reasonable time. If the generator program is written for
machine independence and the parameters affecting the generation process are
well-documented, they provide an effective means to ensure Reproducibility and
Comparability. Good generator code often becomes a standard and can be found
in existing test data libraries (cf. Section 1.4). Generators usually are not pro-
prietary.

A good generator program allows the experimenter to control instance char-
acteristics through adjusting parameters that affect the generation process. Thus,
instance properties can be isolated and their effect on the algorithm’s perfor-
mance can be estimated. However, generator programs may be biased in the
way that unintended correlations are built into the instances or that only in-
stances with particular characteristics are produced. Hall and Poser analyze
existing generation processes for machine scheduling problems and state that
some widely used approaches actually are biased in such a way [22]. Further
ressources of biases may be rounding problems in the generation process or the
used random number generator, e. g., when only the last bits are examined [16].
L’Ecuyer gives some useful hints on the usage of random number generators [38].

When evaluating heuristics or approximation algorithms for intractable prob-
lems, an important value is the quality of the found solution (cf. Section 1.2.2).
It would be nice to know the value of an optimal solution in advance. Such a
feature is offered by some generators. They are able to produce instances with a
known optimal solution that is concealed from the tested algorithms. However,
restricting the tests only to instances with known solutions is likely to yield un-
convincing results. One reason is that instances with a built-in solution often
have a narrow and very artificial nature and thus are not representative. Fur-
thermore, instances with known solutions do not constitute the primary goal of
heuristics or approximation algorithms that are designed to handle cases where
an optimum is unknown and too hard to find.

Being not representative for real-world behavior is one of the main points
artificial instances are often criticized for. The argument is that artificial in-
stances can only be meaningful if there is some evidence that they can predict
the algorithm’s behavior on real-world instances. In fact, very often artificial
instances do not resemble real-world behavior and thus drawn conclusions may
not be valid for real-world instances. An example is the frequent assumption
of a uniform distribution to select artificial instances from an instance popula-
tion. Of course, there are studies where it can be well justified to generate the
instances uniformly at random, e. g., when comparing sorting algorithms on in-
teger sequences [36]. But in most cases real-world instances are not distributed
uniformly. Real-world instances include structure, and it is certainly true that
unstructured artificial instances tell us little about real-world performance. As
an example Johnson states that asymmetric TSP-instances, with independently
chosen distance matrix entries from small ranges, often are particularly easy to
solve [32]. Algorithms succeeding on them may dramatically fail on more realistic
instances. However, there are also examples where it seems impossible to build

22

realistic models. For example, McGeoch points out that network flow problems
occur in so many areas that it is very difficult to cover all of them in a generator
program [41].

Nevertheless, there are some definitive advantages when using artificial in-
stances. A careful design of the generator program can guarantee that at least
some properties of realistic instances are met. And very often this is the best one
can hope for since there is one main difficulty when trying to generate perfectly
realistic artificial instances. It requires very sophisticated analyses to identify
appropriate parameters and corresponding values that would lead to realistic
artificial instances. In fact, hardly any generator really can produce realistic
data. But the ability to control the instance characteristics should not be under-
estimated when considering the main advantages and disadvantages of artificial
instances.

Advantages Disadvantages
— arbitrary size available (Variety) — lack of realism (Purpose)
— arbitrary number available (Quantity) — difficult to assess real-world
— rarely proprietary (Comparability) performance (Purpose)
— ability to control characteristics — susceptible to unintended
correlations and biases (Un-
biasedness)

Perturbed Real-World Instances When comparing the lists of advantages
and disadvantages of real-world and artificial instances the observation is that
they are inversions of each other. Several researchers suggest a way to try to
combine the advantages of both real-world and artificial instances [21,25,48, 50,
57]. The following discussion is based on these papers.

Starting from real-world instances, a controlled variation by a generator pro-
gram yields perturbed real-world instances. Such instances are a compromise of
real-world and artificial instances.

Due to the number of perturbed real-world instances that can be obtained
from one real-world instance, their available Quantity is better than for real-
world instances. However, the size of the perturbed instances may not differ
dramatically from the size of the original real-world instance, and the inherent
structure of the real-world instances nearly stays the same. Hence, perturbed
real-world instances cannot support Variety in the way artificial instances can.

Another problem is the ability to resemble real-world behavior. On the one
hand, perturbed real-world instances cannot be seen as actual real-world in-
stances due to the perturbation. But on the other hand, they retain much of
the inherent structure. This causes their degree of realism to fall somewhere
inbetween real-world and artificial instances.

However, the most serious problem with perturbed real-world instances is
that it is often very hard to identify interesting parameters that have to be
changed to obtain useful perturbed real-world instances from given real-world
instances. This difficulty cuts back the benefits perturbed real-world instances

23

have. For this reason, Shier suggests to use a meta-algorithm that, given an al-
gorithm and a test instance, would generate interesting perturbed instances [57].
But this still seems to be dreams of the future.

We conclude with a short summary of the advantages and disadvantages of
perturbed real-world instances.

Advantages Disadvantages
— better Quantity than real-world — Variety comparable to real-
instances world instances
— more realistic than artificial in- — less realistic than real-world in-
stances stances

— often hard to identify meaning-
ful perturbation

1.3.3 What Instances to Use

There is no proven right way for the choice of good test instances, and the debate
which instances to use continues. Since the choice of test instances usually is
limited by time and space restrictions, some tradeoff will always have to be
made. We can derive some helpful suggestions from our above discussion and
the references therein.

To ensure the Comparability with previous studies standard test sets and
generators should be used whenever possible. Proprietary instances should only
be used under special circumstances and with adequate justification. There may
be scenarios where it is impossible not to use proprietary instances, but in most
cases the lack of Comparability is too large compared to their usefulness.

We have seen that real-world instances and artificial instances are quite con-
trary in their advantages and disadvantages. The inclusion of real-world instances
enables the assessment of the practical usefulness of any tested algorithm. How-
ever, since another goal should be to test against a Variety of instances, the only
way is to additionally include artificial instances. They may rarely be realistic
enough to completely substitute the real-world instances, but their most impor-
tant advantages are their nearly infinite variety, and that the experimenter may
isolate special instance properties that directly affect performance. Very often
structures can be found in the artificial instances that allow a careful compari-
son to the real-world instances and thus enable the experimenter to evaluate the
predictive quality of the random results.

Very often instances are chosen on which the tested algorithm performs well
or it is easy to demonstrate improvement over previous algorithms. But addition-
ally, there should be always included test instances where the tested algorithm
is likely to perform poorly. This enables the judgment of potential weaknesses
which indicates Significance and Unbiasedness.

Altogether, our suggestion is to use at least real-world and artificial instances.
Finding meaningful perturbed real-world instances often is too hard compared
to their benefits. It mostly suffices to use artificial instances in addition to real-
world instances. Before choosing instances the experimenter should be aware of

24

the practice in the corresponding field to know which instances were used in past
experiments. However, the Purpose of the experiment should determine the final
choice of instances.

As a last remark, we point out that regardless which instances are used in
an experiment, they have to be conscientiously documented and made available
to the public to ensure Comparability and Reproducibility. Furthermore, a good
talk on algorithmic experiments states what instances were used [44].

1.4 Test Data Libraries

In Section 1.3.1 we have seen that, in order to ensure Comparability and Repro-
ducibility of algorithmic experiments, it is essential to make the test instances
or their generator programs with the corresponding parameter settings publicly
available. A convenient way is the usage of test data libraries. These are col-
lections of test instances and generators focused more on a single problem, like
the library for the satisfiability problem (cf. Section 1.4.4), or on a set of re-
lated problems, like the libraries for constraint solving or theorem proving (cf.
Section 1.4.4).

The outline of this section is as follows. Section 1.4.1 contains properties of
a perfect library. In Section 1.4.2 we focus on issues relating to the creation
of a library, whereas Section 1.4.3 discusses challenges of an already established
library. Section 1.4.4 closes with a brief compendium of existing test data libraries
that again highlights some of the most important library issues.

1.4.1 Properties of a Perfect Library

Today, very often the test instances used in algorithmic experiments are ob-
tained from test data libraries. Thus, it is important to be able to identify good
libraries. We provide some properties that are characteristic for the quality of
test data libraries. Our following alphabetical list is based on discussions by
several authors [4,19,21,17,18,28,22,29,51,60].

Accuracy A library should be as error-free as possible. This applies to the con-
tained instances or generator programs and as well to their documentations
or any other included data. An example would be that the instances should
have unambiguous names in the library.

Any error found has to be corrected immediately and documented in a kind
of “history of changes”.

Availability In the days before the Internet came up, the test data libraries
were books or available on magnetic tapes that had to be ordered from the
maintainers [15,51]. Nowadays, lots of libraries for nearly any problem are
freely available on the Internet. Thus, they are easy to find and accessible
for any experimenter.

Completeness A library should be as comprehensive as possible.

On the one hand, this means that libraries should contain all test instances
or generators known for the respective problems. Ideally, an experimenter

25

should not need to look elsewhere to find appropriate test instances. Newly
occurring test instances should be included immediately.

But on the other hand, this also means that additional information on the
test instances should be included. Such further information might be the
best known solution, performance data of algorithms solving the instances,
references to studies where the instances were used, pointers to state-of-the-
art algorithms, or any useful statistic.

Coverage A library should contain all meaningful instances of the respective
problems. Hence, it should be as large as possible. New instances have to be
included whenever available (cf. Extensibility). However, very large libraries
require a sophisticated design to guarantee the Fase of Use.

Difficulty There should be contained neither just hard nor just easy problems

in a library. Practical problems often differ very much in their difficulty, and
this mix should be reflected in the library. Even very easy problems may
be useful for first expositions on a newly developed algorithm. For a new-
comer difficulty ratings for the instances would ease the choice of appropriate
instances.
Note that even for established libraries there may be doubts concerning the
Difficulty. For example, Holte showed that for the UCI Machine Learning
Repository the accuracy of some very simple classification rules compared
very favorably with much more complex rules [26]. However, the practical
significance of this result depends on whether or not the UCI instances are
representative for real-world instances. On the one hand, many UCI instances
were drawn from applications and thus should be representative. But on
the other hand, many of the instances were taken from studies of machine
learning algorithms. Hence, they might be biased since often experimenters
only include instances that their algorithms can solve. The conclusion is
that only a careful analysis and selection of instances ensures a wide range
of Difficulty in a library.

Diversity The instances contained in a library should be as diverse as possible.
There should be real-world instances from applications, as well as artificial
instances that allow the evaluation of the influence of special instance prop-
erties on algorithmic performance.

Unfortunately, very often instances from certain applications are favored
while others are neglected. The instances in a library should represent in-
stances from all applications where the respective problem might occur.
The more diverse the instances in a library, the easier it is to choose a varied
set of instances. This helps to prevent an experimenter from over-fitting
algorithms, testing them only on a few instances with similar structure.

Ease of Use A library should be easy to use. This includes obtaining instances
from the library but also reporting errors or suggesting new instances. Ideally,
there are software tools that might help to convert instances from the library
to another format or that support the submission of new instances.

Also the navigation in the library is a crucial point. An experimenter should
have no problems finding the instances that match his purpose or realizing
that such instances are not contained in the library.

26

Extensibility Although desirable, it is very unlikely that a library contains all
meaningful instances of a problem (Completeness). Hence, a library should
be extensible, and the addition of new instances should be as easy as possible
(cf. Ease of Use).

Another aspect of Extensibility is not only the inclusion of new instances
of the original problem but the addition of related problems, e.g., including
SAT-instances in a 3SAT-library.

Independence A library should be as independent as possible from any algo-
rithm solving the corresponding problems. This means that the instances
included in the library should be chosen as unbiased as possible, not prefer-
ring only instances where solely one algorithm succeeds.

Furthermore, this means that the format in which the instances are repre-
sented in the library should not be proprietary to only a few algorithms.
Topicality A library should be as up-to-date as possible. If, for example, the
best known solution to an instance or the rating of an instance changes due
to new studies, the respective information in the library has to be updated

to prevent duplication of results.

1.4.2 The Creation of a Library

The creation of a library involves very different aspects. First of all, a choice
of the data format to represent the instances has to be made. For the main
points considering the data format, we refer to the corresponding discussion in
the Portability part of Section 1.3.1.

Ideally, the decision what format to use in a library should not be done by a
single person, but rather by the research community. For example, the DIMACS
Implementation Challenges [12] have served to establish common data formats
for several problems, like the cnf-format for SAT-instances. Nevertheless, even
if there is already a commonly accepted format, there might be some arguments
for modifying it, e. g., if it does not allow for future extensions, like including new
properties. Hence, as early as in the choice of the data format, future Ezxtensibility
can be assisted.

But Extensibility is not the only property from our above list (cf. Sec-
tion 1.4.1) that has to be considered already in the creation process. Another
one is Completeness. Ideally, a new library should include all instances that are
known to the community so far. This often simultaneously supports Difficulty
and Diversity. But to collect all the known instances the support of the com-
munity is essential. Hence, the library project should be advertised as soon as
possible to find lots of contributors that provide test instances. The resulting
benefit for the community is one single place where all instances can be found.
This should attract researchers to cooperate if they get to know the project
through formal and informal advertisements in mailing-lists, on conferences, or
in journals. But not only active researchers should be encouraged to provide
instances. Also industry should be asked to support applications data—possibly
breaking their proprietary nature.

27

Through the collection of the known instances some problems might arise.
The library creator must ensure that the instances are as unbiased as possible.
Including only instances from published algorithmic studies might favor feasible
instances since most studies only include data that shows how well the studied
algorithm performs. Unfortunately, such instances that have already been solved
by some algorithm have a selective advantage in a couple of libraries. To protect
against such a narrow selection that would influence Independence, also existing
generator programs have to be included. They can provide lots of instances that
are new to almost every algorithm.

The collected instances have to be carefully transformed to the data format
of the library to prevent from errors (Accuracy). This could be the birth of a
tool that is able to convert the instances from one format to another. Such a
tool should be included in the library as well (Ease of Use).

And last but not least, the Awailability of the finished library is a crucial
point. Today there is a very convenient solution—the Internet. Creating a website
for the library not only enables almost everyone to access the library, but also
allows to use the features of the Internet, like creating hyperlinks to papers that
use the instances from the library. A welcome page of the library could, for
example, contain links to the instance and generator program pages, links to
descriptions of the problems, and a link to a technical manual describing the
library and its data format. All the individual pages of the library should have
a common layout to support a consistent representation and the Fase of Use.

However, with using the Internet there might occur a problem when having
the library at only one server. As Johnson pointed out: “Never trust a website
to remain readable indefinitely” [32]. For the library creator, this means that
at least one mirror-site of the library on a different server should be created to
protect against unavailability.

1.4.3 Maintenance and Update of a Library

After the creation of a library the work is in no way finished. We might just as
well argue that it even has started.

Hardware and algorithms become faster, and thus instances might become
too easy. For future generations of hardware and algorithms, the typical and
demanding problem instances change. This means that a static library would
quickly become obsolete since it cannot represent such changes. But besides the
major changes, like including new useful instances (Extensibility) or revising the
data format, there are still other minor activities for a created library. Based
on our list of properties from Section 1.4.1, reported errors have to be corrected
(Accuracy) and new results for the library instances or pointers to new studies
should be included (Topicality). Hence, a good library has to be continuously
maintained and updated. A history of the changes to the library may support
the Fase of Use.

The responsibility for all that work should be shared by several persons. We
refer to them as maintainers of the library. Ideally, the maintainers themselves are
active researchers in the library’s field. This allows them to assess the significance

28

Library Short Description

CATS combinatorial optimization and discrete algorithms
CSPLib constraint satisfaction problems

FAP web frequency assignment problems

GraphDB exchange and archive system for graphs

MIPLIB real-world mixed integer programs

OR-Library operations research problems

PackLib? packing problems

PSPLIB project scheduling problems

QAPLIB quadratic assignment problem

QBFLIB satisfiability of quantified Boolean formulas
SATLIB satisfiability of Boolean formulas

SNDlib survivable fixed telecommunication network design
SteinLib Steiner tree problems in graphs

TPTP thousands of problems for theorem provers
TSPLIB traveling salesman and related problems

Table 1.1. Examples of established test data libraries

of submitted instances and to keep track of current trends in the community.
However, this also means that there has to be sufficient financial support enabling
the maintainers to spend part of their time on the library. Maintaining a library
should also be credited by the community, like being on the editorial board of a
journal.

Nevertheless, the work should not only be done by a few maintainers. The
community as a whole is asked to provide new useful instances, point to new
interesting results, and report errors. Contributing researchers should be ac-
knowledged for their suggestions in the library. If the support of the community
is missing, a library project might even fail. Lots of researchers should be en-
couraged to use the library. Thereby, they will most likely become active con-
tributors. This again emphasizes that the role of a broad advertisement of the
library cannot be overestimated.

Altogether, a library can be seen as kind of an ongoing open source software
project. New stable versions have to be provided in regular intervals by some
responsible maintainers, assisted by a community of volunteers.

1.4.4 Examples of Existing Libraries

There is a wide variety of existing test data libraries. Table 1.1 lists some of
them, but is by far not meant to be complete. All of these libraries may be easily
found on the Internet by using any search engine. We close our discussion of test
data libraries with a more detailed view on four example libraries. Thereby, we
summarize the most important issues from the previous sections.

29

CATS The ambitious library CATS was announced in 1998 [19]. Different pages,
each devoted to a specific problem, with a unified layout should be maintained
by volunteers using contributions from researchers. But a look at today’s state
of the library only offers pages for two problems—one on MAXIMUM FLOW and
the other being a draft devoted to MINIMUM SPANNING TREE. Both pages were
not updated in the last years. Unfortunately, it seems that the community did
not use and support the CATS library as it would have deserved. But as we
pointed out in Sections 1.4.2 and 1.4.3, the support of the community is crucial
for the success of a library.

CSPLib The first release of CSPLib stems from March 1999 [17,18]. It contained
14 problems in 5 overlapping areas. Today there are 46 problems from 7 areas.
Hence, at first glance the library is not very large—although 46 is only the
problem not the instance count.

Since very often the solvability of a constraint satisfaction problem depends
on data representation, the library creators decided to be as unprescriptive as
possible. The only requirement is that the problems are described using natural
language. The main point is that no instances have to be given. Thus, the CSPLib
is rather a problem than an instance library, which somehow qualifies our above
remark on the library size. On the one hand, using natural language description
eases the input of new problems which might encourage researchers to contribute.
But on the other hand, the derivation of concrete instances from the specification
might be quite cumbersome. Both factors influence the Ease of Use, which is an
important property for every library.

SATLIB It was established in June 1998 [29]. Different from the above de-
scribed CSP-situation, there is a widely used and accepted data format for
SAT-instances—the cnf format from the Second DIMACS Challenge. As we
pointed out in Section 1.4.2 such a widely accepted data format is the basis for
a wide usage of the library.

Unfortunately, the current stable version 1.4.4 of SATLIB is more than five
years old. The SATLIB-page announces an update since 2003, but as we pointed
out in Section 1.4.3 this includes lots of work. This is a downside of maintainers
being active researchers. Since they also have to do non-library work, necessary
activities concerning the library may take a while. A possible way out might be
the engagement of some assistants, when major changes are due. But this would
require a broad financial support of the library.

TPTP The library containing instances for evaluating automated theorem
provers started in 1993 [60]. It has become a nearly perfect library.

Again, different to the situation for constraint satisfaction problems, widely
accepted data formats exist, which are used to represent the instances. Over the
years, TPTP continuously grew from 2295 instances from 23 domains in release
v1.0.0 to currently 8894 instances from 35 domains in release v3.2.0. Instance
files include ratings denoting their difficulty.

30

The library not only includes many of the instances known to the community,
but also generator programs for artificial instances. Thus, it is as comprehensive
and diverse as it could be. Due to its Completeness and Diversity, TPTP served
as a basis for lots of CADE ATP System Competitions in the last years.

Concluding, we can state that TPTP is a highly successful and influential
library for the field of automated theorem proving. Such an impact should be
the main purpose of any library.

1.5 Setting-up and Running the Experiment

The setup of experiments and their execution require a precise plan that de-
scribes the steps to be taken, in every science. These phase is located between
the design idea, its implementation, and the evaluation of results together with
insights gained during one run through the cycle of Algorithm Engineering. First,
you have to think about what you want to report on, to find falsifiable hypothe-
ses that should be supported or rejected by experiments. Section 1.2 covers this
part. If not yet done, you should then implement the algorithm. For details see
Chapter 6. How to come up with a meaningful, big amount of input instances
has been discussed in Section 1.3. Before we can evaluate results in Section 1.6
it is needed to set up a well-suited test-bed and run the algorithms on the data, a
non-trivial task. This section focusses on the difficulties that arise in Algorithm
Engineering, that mainly consist of two areas of interest. First, experiments in
computer science have been ignored for quite a long time. Only in the recent
years, researchers rediscover their strength and possibilities. Some of the hints
given in this section address in general computer scientist and aim to encourage
them to run experiments. The goal is lead the community to good experimental
work, as it is the case in other sciences. Thus, the hints mainly adapt state-
of-the-art rules, applied in e.g., in natural sciences, and turns them towards
computer science. Second, the cycle of Algorithm Engineering naturally forces
experimenters to run similar experiments over and over again. Thus, further
remarks recommend how to ease this process, while still being accurate as an
experimental science demands. For the sake of better distinction, the setup-phase
is elaborated first in Section 1.5.1, followed by hints applicable in the running-
phase mentioned in Section 1.5.2. It is useful to learn about pitfalls of both
phases before running any experiment. Section 1.5.3 give additional advice for
approximation algorithms and collaborative experiments.

Most pieces of advice originate from the very good overview paper written
by Johnson [32] and a crisp collection of “DOs” and “DON’Ts” stated by Gent et
al. [16]. We extend them by hints presented in a paper of Moret [45]. Given
suggestions and motivations are also influenced by personal experiences. These
are gained by experimenting in the area of computational geometry done in the
past yeast and those planned for the future. Some analogies to natural sciences
are taken into account from personal communications.® Most of the given hints

® with Peter Leibenguth

31

and suggestions are not problem-specific, since they can be applied to almost
any experiment one can think of. Otherwise, special cases are pointed out. This
section mainly collects an important set of high-level hints for an experimenter.
For problem-specific experiments, possibly proper and case-specific extensions
have to be done. Furthermore, as “DON’TS” describe prohibitions all pieces of
advice are stated in a positive, constructive manner. Several ones might overlap
with others, which is due to the complexity of the whole area. Thus, the reader
should not be bothered, when reading some statements twice. In contrast, this
emphasizes argument’s importance and points out existing correlations.

1.5.1 Setup-Phase

A well-organized laboratory is essential for a successful experiment in natural
sciences. Often, scientists, in these areas, have to deal with a lot of restrictions
or have to experiment outside of the laboratory. Unlike finding their laboratory
somewhere, algorithmic scientists have to use computers. The experimenter is
faced with the possibility to adjust a huge bunch of parameters. Algorithm Engi-
neering aims for a best choice. Experiments serve to support the chosen decisions
or falsify some considered hypothesis. Otherwise, if experiments are set up arbi-
trarily, their results may loose every meaning. In the following, we collect advice,
such that an experimenter can avoid some pitfalls that might occur during the
setup of an algorithm experiment.

Use available material! When reinventing the wheel, an experimenter may
loose huge amounts of his limited time to finish the experiment. Public reposi-
tories or selected requests to other researchers should help to save time. To use
available material is suggested. Two reasons exist to do so. First, experiments
should be finished as soon as possible, which does not mean to carelessly execute
them. Second, results need to be related to exiting set-ups and experiments. For
the sake of reusability, the focus lies on available test instances and implemen-
tations.

Test sets may be obtainable from internet repositories as presented in Sec-
tion 1.4 or from the authors’ homepages. Some journals support publishing of
additional material, so this is another place to look. If there is a standard library
of instances, you are always supposed to use this instance library. In case the
original test set is not available, but was generated artificially in some way, you
should regenerate instances with the same parameters as the original one. This
requires a detailed description of the generation process and the parameters used
in the original paper.

The same holds for the implementation. Sometimes the source code is publicly
available. In other cases the authors may be willing to provide it for further
experiments. If you do not have access to the source code, you should implement
the algorithm yourself, taking into account the implementation details that were
reported. A new implementation in your computing environment or recompiling
available source code is clearly preferable to make the old results comparable

32

to yours [4]. However, a new implementation may be infeasible, for instance,
because the algorithm is too complex or important details of it are unknown
(e.g., of an commercial implementation). In this case you have to stick to some
reasonably good implementation.

Once an implementation and the original or similar test sets are available, it
is a good idea to try to reproduce the original results qualitatively. In particular,
this is running the experiments on the test set, measuring the necessary quanti-
ties and checking whether the data is consistent with the claims in the original
publication. A discrepancy is worth pursuing, usually indicating a flaw in the
implementation or test setup.

To enable other researchers to participate in the process of Algorithm En-
gineering, is is recommended to publish as most as possible. At its best, it is
advised to provide source code and full data sets.

Ensure you use reasonably efficient implementations! An efficient im-
plementation is the most fundamental part for the experimentation procedure.
Johnson [32] states three major advantages.

— Allow to support claims of practicality and competitiveness.

— Results of inefficient implementations are useless, since they most proba-
bly change the picture one would actually expect from implementation in
practice.

— Allow to perform experiments on more and respectively larger instances, or
to finish the study more quickly.

Chapter 6 already discusses the implementation task with all its aspects. A main
source of information how to reach efficient code is contained in Section 6.3.1
that describes tuning techniques. Some researchers forget, ignore or do not have
time to implement known speed-up techniques, but still state that their imple-
mentation would be competitive to the ones using speed-ups when implementing
these tricks for their own algorithms. But this argument lacks plausibility. It is
completely unknown, whether certain tricks make sense for any other algorithm,
and if so, in how far they actually improve the running time. Similar arguments
hold for other performance measures.

Compilation In order to get efficient code, it is important to choose the right
combination given by the platform. Note that the programming language matters
as much as the compiler and its options. In general, you should take a compara-
ble environment. If you only benchmark your algorithm, then the programming
language is quite unimportant, but in case you compare with others, even if only
copying their running times, it is advised to use roughly the same technology for
the implementation. If existing experiments are implemented using C++, coding
your algorithm in Java will make a comparison very difficult.

To avoid unnecessary slowdowns, you should always run compiled code in-
stead of interpreted code. For sure, compiling code is a science in itself, but
basic rules can be stated here, too. When you compile code for experiments

33

which include timing, switch off all debugging and sanity checks in your code.
A print-statement usually takes a huge amount of time, and pre-, post- and
assert-conditions also only slow down the computation time. They only aim for
the correctness of your code during runtime, while especially for non-trivial rou-
tines, they might influence the worst-case running time. Therefore, failures in
these conditions on your test data indicate bugs. Testing your code on the data
with active conditions is required, but for generating publishable performance
measures and also to distribute your software, remember to deactivate them. If
now new errors or crashes appear, you can be quite sure, that a sanity check
contains a side-effect which should be definitely avoided.

Deactivating debug code and compiling in optimized fashion also holds for
supporting libraries used in the implementation of your algorithm(s). Commonly,
these supporting libraries are used for subroutines or atomic functionality. Usu-
ally, they are called quite often and you have to ensure you select the right
implementation. An infamous example is using a ©(n?) sorting routine. Espe-
cially when you use experiments to approximate the asymptotic running time of
a theoretically unanalyzed algorithm, such an influence is without doubt. Even
if it is the case that you have chosen the theoretical best-known algorithm for a
subroutine, big constant factors, that play an important role in implementations,
will influence the algorithms performances dramatically and may destroy com-
petitiveness of the implementation of your algorithm. Note that in experiments
we always compare implementation of algorithms only and not their theoretical
behavior.

Coding Section 6.3 already suggests not to spent too much time for fine-tuning.
The bottom-line is to produce reasonable efficient code in a reasonable amount
of time. Code documentation as explained in Section 6.5 is also demanded. It
serves to remember details of the implementation and helps others to under-
stand your software, especially when published under an open source licence.
Published software enables other researchers to run your experiments on their
own machine, maybe slightly modified due to new algorithmic ideas. Further-
more, they possibly submit bugs to you.

Section 6.2 has covered techniques to avoid bugs. Some bugs should be fixed
when entering the experimental phase. Namely, the bugs that make the software
crash, and bugs that lead to a wrong output. But there are also bugs that neg-
atively influence the performance of the algorithm. To find such bugs bears out
as a non-trivial task and experiments seem to be the main technique to detect
such hidden errors. They will never show up voluntarily, you have to search for
them, which needs some indication. Otherwise, you just believe that the perfor-
mances are already optimal. The only chance to find them is some deviation in
the results. Profiling your code gives a very good overview which subroutines are
called very often, and which consume a lot of time. Unfortunately, some bugs
cannot be detected by a profiler, e. g., filter failures as mentioned in Section 6.3.1.
Either you design and prove theoretically the lack of such failures, or you have to
implement a testing layer in between the high-level parts of the algorithm and its
subroutines, to see whether equal objects are not identified. Both methods are

34

rather disappointing and success is not guaranteed. If you do not believe in bugs
that destroy the performance of an algorithm look at this example. Consider an
implementation of quick-sort whose choice of the pivot element is not random
due to some wrong variable usage, e.g., by accident. Whenever your algorithm
needs to sort some structured containers, quick-sort suddenly performs at its
worst-case running time of O(n?).

Systematic Errors It seems that systematic errors during experiments on algo-
rithms can be avoided from scratch, while, for example, physicists face uncertain-
ties in there measurement devices or are unable to measure at the actual point
of interest. Unfortunately, these appearances are deceptive. At a first glance,
nearly everything seems to be under control, but you have to make sure that
you have control of the right points. A wrong position of a timer, e.g., in the
innermost loop, changes the whole performance of an algorithm dramatically.
This example comes along with having too many timers in the code. You should
always scrutinize whether your decisions make sense in your setting and whether
your measuring methods keep the experiment free of bad influences.

Check your input data! Before running the actual experiments ensure you
use correct input data. In general, if your input data set covers a significant
part of the allowed input space for your algorithm, you are doing the right
thing. Section 1.3.1 discusses in detail what needs to be considered to find a set
of instances with enough variety, and Section 1.3.2 deals with advantages and
disadvantages of artificial and real-world data. A useful set of instances contains
a balanced mixture of both.

Your data sets might be corrupted or faulty generated. Real-world data are
often corrupted or need special pre-processing. Buggy generators may create ar-
tificial data that do not produce the desired sets. Careful experimentation checks
the appropriateness of such data before running time-consuming algorithms. As
explained in Section 1.3.2 non-random numbers might also bias the data gener-
ated sets. In general, each single data instance should be free of redundancies, for
example, the same points twice when computing the convex hull of points. Oth-
erwise, you only check the caching strategy rather than running the algorithm
on a bigger instance. Of course, it is useful to see whether an implementation
handles redundancies optimally, but better check this performance with its own
experiment.

Data sets might also be to simple. This mainly addresses input data that
are processed within a fraction of a second. Instances should be chosen in a way
that measurement’s noise does not affect the results. Hereby, noise denotes points
which affect running time in general independent of the specific algorithm which
should be tested. Today’s computers consists of several units, e.g., pipeline,
register, memory hierarchy. Hence, it takes some setup time until all operational
units of the computer fully work on executing an algorithm. This is denoted by
measurements noise, which barely can be ignored if your input instance runs
only for some milliseconds. On current machines, a good advice is to use input

35

data that run at least a second. The situation might be different, when aiming
for counts only or when dealing with real-time computations.

Use different platforms! The best implementation is only as good as the
supporting environment. This means that the environment plays an important
role in setting up an experiment. In computer science, the performance of an
implemented algorithm crucially depends on the used hard- and software. The
following questions need to be answered. Which processor is used? How much
memory is available? How is memory hierarchy organized? How many registers
are available? What is the underlying operation system? Which compiler was
used, additionally given chosen compiler options? Which supporting libraries
are utilized? Obviously, you cannot test your algorithm for all possible combi-
nations of hard- and software, but restricting yourself to implement it only in
one specific environment may change the picture. Beyond, it may lead to hy-
pothesizing non-existing conclusions of the data due to specific behavior in the
external environment, e.g., a special caching strategy of the operating system
which influences the movement of data.

It is strongly recommended to test algorithms at least on a small set of
different architectures and with different compilers. A good balance between
different environments and fine-tuning of code for each one should be found.
Running the same experiments on different platforms helps to avoid to draw the
wrong conclusions. Whenever these implementations show surprising differences
in their performance measure, it is a must to ask why and to find the answer.
These differences show whether the implementation in the environments are free
of dependencies to the setup and therefore allow to draw setup-independent
conclusions.

Aiming for comparability of experiments, the calibration of the machine(s)
is a lot more useful than just stating the architecture and the speed of your
processor. Architectures change within a couple of years dramatically, which
makes it difficult to relate new results to old ones then. Calibrating the machine
means to compile and run in your setup a small piece of code that is publicly
available and known as well as accepted in the community. Its output states
more about the problem-specific performance of the machine than the CPU
speed does. Future researchers can then adapt their machines the same way
which enables them to normalize the old results to their own new results. There
is a chance that this normalization fails. But in most cases it is much more
valuable than normalizing to the pure CPU speed and obviously better than
forgetting about it.

Use appropriate formats! Section 1.3.1 already discusses the need to carefully
select the format for input instances. On the output side of the algorithm we
will see a bunch of results, at least the measures selected during the design of
the experiment, e. g., running time. See Section 1.2.2 for more details. If we are
purely interested in the primary measure(s), we can just print this information
to the console. But thinking a little bit further, it can be seen that it is really

36

useful to have self-documenting programs. Consider a question of a reviewer
that comes months after you actually run the experiments or you want to do a
follow-up study. In both cases you have to remember most of the old results, and
expect that your personal memory might forget most of these things. Therefore,
it is strongly recommended to create some self-explaining output format for each
run that collects all relevant data, which, for example, consists of the following
list.

— Main measures, like CPU time, solution quality, and memory usage.

— Algorithm data, like the name and version of the algorithm, its parameter

settings.

Meta data, like the date, the name of the instance.

— Setup data describing the used machine, memory hierarchy, used compiler
and its flags.

— Supplemental measures that can be useful when evaluating the data in the
future, like intermediate values, operation times or simple counts of operation
calls.

Especially, when computing the additional data, one should avoid to harm the
overall performance of the algorithm. If an additional value can be stated without
extra costs, it would be careless to omit it, since otherwise, you need to rerun
the experiment to get its data, which would be really expensive. A sophisticated
design of the experiment that checks which data should be outputted before
starting the actual running phase is strongly advised.

The used output format should be of clear and effective syntax. Furthermore,
avoid using abbreviations, since every value that cannot be interpreted correctly
in the future is useless. XML might be a good candidate as format choice, but one
should definitively check whether it fits all needs while staying simple enough.

We want to go even further and enforce every setup to combine input in-
stances, implementations, and results into a common framework.

Do use version control! So far, we have learned that the setup for an em-
pirical study is far away from naively implementing some small environment.
In contrast, most experiments start with some initial setup and are constantly
evolving. They become larger and more complex, e. g., new algorithms are being
added, methods are changing, additional instances should be tested and bugs will
be fixed. In summary, this is a perfect setting for a version control system like
Concurrent Version System or Subversion that have already been recommended
for the implementation of an algorithm in Section 6.6.5. A version control system
allows to store snapshots of the current system in a common repository, which
can be also accessed and fed by a group of developers.

Putting all changes of your setup constantly on a repository provides several
advantages:

— It allows you to go back in time by checking out old versions, it ensures
reproducibility. You are able to rerun all your experiments.

37

— It also provides tools to compare two versions, which offers the possibility to
check which changes result in better or worse algorithmic performance.

— Not using a version control system is a quick way to loose control over
different versions of your environment. You may store your files within time-
stamped directories. But then, fixing a bug in one version, while improving
a heuristic in another one will quite surely lead to a third version, which
contains the bug again. Version control cares for these changes. Thus, a
fixed bug cannot appear again in the future as it might happen when human
beings maintain different copies of a file.

— Storing subsidiary data close to the executables of the experiment is much
better than maintaining a bunch of files, or even to use your personal memory
that might be more forgetful than everyone hopes for.

Obviously, the version control on a central server only makes sense, when
the repository is under control of a reliable backup system. Otherwise, you may
lose your complete work which contradicts the aim of reproducibility. Assuming
that version control systems are error free may lead to useless experiments, too.
Although system are quite matured, having an eye on its operation, e. g., whether
diff works fine and versions are properly stored, is good advice.

Use scripting! As we know, Algorithm Engineering, and especially experimen-
tation, consists of an iterative procedure to progress and to reach publishable
results. Several tasks have to be performed a repeated number of times or similar
jobs should be controlled over and over again. Instead of starting each single run
manually, it is advised to analyze the structure of the experimentation in detail.
Its evaluation will lead to a bunch of scripts and proper pipelining. At its best,
it suffices to only press the red button. In the end, processed data are collected
and may be already presented in figures which are a fundamental help in data
evaluation. Scripting and version control are fundamental partners. With such
a setup, the researcher can concentrate on developing algorithms and selecting
or generating instances while the actual experiments run automatically, maybe
scheduled at regular times on your machine or during night.

With ExpLab [23] a set of tools is provided that collect the mentioned parts
out-of-the-box. It offers scripts that allow to set up and run computational ex-
periments, while also automatically documenting the environment in which an
experiment is run. Assuming that the same environment is still available, it al-
lows to easily rerun the experiments and to have a more accurate comparison of
computational results. Finally, ExpLab provides text output processing tools that
help dramatically to eliminate some tasks needed for collecting and analyzing
the output. Its overall goal is to augment existing tools to reach a comfortable
experimentation environment. Unfortunately, its development has been stopped
and it is built on top of cvs instead of svn.

1.5.2 Running-Phase

Once the laboratory is prepared and set up, it is time to start the experiment.
During setup you tried to exclude all environmental errors for the experiment.

38

But obviously, while running an experiment further errors can be made. In a
natural science experiment, wrong timing may destroy the whole result. Fur-
thermore, forgetting to write down parameters disposes you of the possibility
to publish any valid result. In some way, these strict rules seem to be forgot-
ten when publishing experimental results in computer science, especially perfor-
mance measures of algorithms. In contrast, reviewers would be very happy to
get informed about the main facts the experiment was run with. Therefore, ap-
plying adapted methodology from natural science to your experimental running
phase prevents you from having no answer to questions asked by colleagues or,
even worse, reviewers. It is recommended to check in how far the following hints
should already be considered during the setup, although they address directly
the running-phase.

Keep notes! Each experiment in natural sciences is only valid, if any other
similarly equipped laboratory can reproduce the same result. That requires a
detailed description of what you did and what you found out. In computer science
this should also apply.

During setup you already decided, which data will be collected and how to
store them. The claimed hypotheses also prompt you to combine algorithms with
data instances. A script lets them run and produces a vast amount of output.
Ensure that this output is also accessible in the future, which means to put them
under version control, too. In case you get asked you can present all details, or
you can also test other instances in the future and relate them quite accurately
to your original results.

Additionally, you should remember to write down and store all good and bad
conditions of your algorithm. You might rely on your personal memory, but to
be sure, it is a better idea to store them explicitly. Furthermore, consider the
possibility of handing over the laboratory to a colleague. He can only build on
the content stored in the repository since he has no direct access to your memory.

Change of Factors! Some algorithms can be fine-tuned by one or several
external parameters, also known as factors as explained in Section 1.2.3. The
actual behavior of a heuristic or the overall algorithm can be influenced. For
an experimental setup it is necessary that the parameters are either completely
fixed and reported or they purely depend on the data given in the instances
to be computed. In the first case, reproducibility forces to assign some values.
Usually, it would be very interesting to know how the algorithm behaves with
other settings. If not fixing parameters, most people experiment with the settings
to find out which combination leads to the best algorithm’s performance. Due
to this fact, before determining the parameters, an algorithm is actually not
properly specified. Only by searching for the proper values experimentally, the
algorithm will be finally determined. But this may result in having different
algorithms for different instances. In contrast, we also want to encourage you to
experiment in certain boundaries with the parameters, since these might lead to
unexpected good performances.

39

To sum up, if you use different parameter settings, where each applies to a set
of different instances, the choices must be well-defined or should be determined
algorithmically from the instances. You also need to report and describe the
adjustments in all details, as well as the running times spent to find the optimal
parameter settings in your publication.

Change only one thing at a time! This advice is closely related to the
preceding one, as well to the planning phase of the experimental work. While the
first one deals with the parameter settings of an algorithm, the latter one must
be considered when testing different instances. Thus, to reach reliable results
it forbids to vary more than one parameter from one run to the next. In the
example of different instances this means that you either change the size of the
input, its complexity, or you chose another type of variation. If you need to
change parameters of your algorithm, also make sure that you only tune one
parameter at the same time.

This rule originates from natural sciences, where you also change, for in-
stance, either temperature or pressure, but never both at the same time. Obvi-
ously, it forbids changing the type of the instance in combination with tuning
some parameters. Especially in this case you get performance values that never
mark valuable comparison results.

Run it often enough and with appropriate data sets! Once everything
is set up, relying on a single run may lead to conclusions without value. Each
proposed claim should be supported by a set of independent runs. You also need
a significant amount of runs to reduce the influence of external factors, i.e., to
average and probably get rid of the noise. Especially randomly generated data
might have a big variety, even when they originate from the same generator. If
you want to check the performance of several algorithms on randomly generated
data, it is a good choice to use the same set of instances for all algorithms instead
of generating them independently for each run.

It is recommended [32,16] to look at as large instances as possible. First,
this gives a better indication of the asymptotic behavior of the running time
or the approximation gap of your algorithms. Second, important aspects and
effects may only occur at large instance sizes due to some boundary conditions,
e. g., caching effects. Looking at huge instance sizes also strengthens your claims,
especially when the instances are bigger than the ones you expect in practical
environments.

If you are using scripts or the tools proposed in Section 1.5.1 it should be
easy to set up a powerful and automatic schedule which can run during the night
and present you a list of results the next morning, depending on the algorithm(s)
and data sets.

Look at the results! This sounds like an obvious piece of advice, but it is a
crucial one. First of all, check whether the actual output, the result the algorithm

40

is implemented for, is correct. If not, you have to search for bugs. If the results
are correct, check whether the global picture is consistent. If you are in the
lucky position, that your scripts have produced some plots automatically, these
pictures help to find out whether the algorithm(s) on the checked instances
behave smoothly. Either you will see a picture, as you might have expected,
which then supports your claimed hypotheses, or, in contrast, some anomalies
occur, €. g., exceptional high or low running time for a specific instance or family
of data sets. Have a closer look at them and explain why they behave differently.
An origin might be a bug. Or you will detect that this behavior is intrinsic to
the algorithm, because this certain family of data always forces the algorithm to
compute it that special way.

In Section 1.6 we explain how to evaluate the performance values more de-
tailed. The now following tools already have to be considered during the running
phase of the experiment.

— Be sure that all important and interesting subsidiary values are contained
in the output of every run. You may have identified them in advance. Now,
they help to understand the runs with more insight and maybe they give the
right hint why certain data forces the algorithm to work differently.

— Much more insight to the algorithmic operations can be gained from the
results of a profiler, a tool that collects run time information of a program,
i.e., it measures the frequency and duration of function calls. Well-known
profilers are gprof® and more recently callgrind/KCachegrind.” Analyzing
such gathered information presents quite exactly and itemized where run-
time is spent, how often functions are called, where the algorithm behaves
as expected and where not. In general it helps to optimize the code. Here,
the number of function calls define a very good picture on the topological
structure of the algorithm. In a sense, it gives a function to each called
subroutine in the input size. Computed ratios of used time and number of
function calls, i. e., normalization, show which subroutines take longer than
others. By having a close look at the profiled runs, you can also find out why
a worst-case algorithm of O(n?) behaves in most cases similar to O(nlogn)
or why a quite complicated algorithm outperforms a simple one.
Unfortunately, it depends on the specific algorithm how to analyze all these
information and what can be derived from these information. Note that you
have to check whether the output of the profiler really makes sense. In most
combinations, it is necessary that every involved code is compiled for pro-
filing. Otherwise, durations of subroutine calls, say of external libraries, are
assigned uniformly instead of assigning them to the actual calling functions.
Let us consider the example, where fast integer multiplication is provided by
an external library. The algorithm has two fine-tuned subroutines, one that
needs to multiply quite small integers (< 50 bits), another one is multiply-
ing quite long integers (> 200 bits). If both subroutines are roughly called
the same number, then a wrong configuration, where functions cannot be

S http://www.gnu.org/
" http://kcachegrind.sourceforge.net

41

profiled in detail, will present you that both roughly need the same amount
of time, since it just averages over all calls to integer multiplication. But
actually, the second routine takes much more time than the first one. The
bottom-line is to be careful when interpreting presented data of a profiler.

Do unusual things! At a first glance, this final suggestion sounds spooky. Do
not get it wrong. Obviously, you should avoid following futile ideas all the time.
But in some situations, it might be helpful to vary an implementation a little
bit. In most cases, it will be only justified, that you bark up the wrong tree.
But maybe your algorithm turns out to behave better. An example can be a
randomized choice of pivot versus a deterministic choice. Bearing away can help
to understand better what your algorithm does. Sometimes, you should allow
yourself to open your mind to crazy ideas. It helps to be more creative. A lot
of serendipities in other sciences originate from doing crazy things rather than
following the rules, or, as you might know from famous examples, they happen
by accident. In software experiments this may relate to an implementation that
is actually buggy, but has a better performance.

1.5.3 Supplementary Advice

The last parts listed in detail how to setup the environment for good experi-
mentation and how to run them with care, based on the assumptions that you
know what you want to see. But experimentation is more than just executing
algorithms and evaluating the results that support or disprove some hypothe-
ses. Note that experimentation actually consists of more than the setup-phase
and a single round of the running-phase. Only a cycle of testing and refinement,
supported by profilers, measurement and evaluation of data, allows to identify
bottlenecks, to reduce the usage of the memory, or to find out, which interme-
diate values should be cached and many more. All these efforts may lead to a
speed-up in running time, sometimes by an order of magnitude, or even several
orders of magnitude.

In case you started with some open research questions, the first results of a
running-phase may quickly lead to new questions. It is a law by itself, that good
experiments constitute a rich source of new conjectures and hypotheses. Actually,
some exploratory experiments, without going too much into details, help to find
good initial questions. These may show whether an algorithm is competitive
or not. We propose, you spent the first half of your time to generate lots of
data and search for patterns and anomalies. Based on this, you can finalize the
implementation while you consider the advice mentioned before. Namely, design
the important questions and then, perform trustworthy experiments to support
your claims. Evaluation may already lead to newsworthy results, or you iterate.
Experimenting is a dynamic process, but ensure to fix a point where you stop it.

The end of this section covers two additional subjects. First, we give hints
when dealing with approximation algorithms, and second, we outline some de-
tails, when jointly experimenting within a group of researchers and sites, respec-
tively.

42

Approximation or Heuristic Algorithms Up to now, we mainly focused on
the running time as the main performance measure of an algorithm. In contrast,
an approximation algorithm needs to be handled differently. Its main perfor-
mance measure consists of the solution quality. In most cases, approximation
algorithms compute better solutions the longer they run. So running time and ap-
proximation value may be related. However, researchers often choose the wrong
stopping criterion, since otherwise their algorithms would run very long. Thus,
approximation algorithms usually deal with NP-hard problems, where one obvi-
ates handling the exponential number of possibilities, or in problem areas where
running time is crucial, whereas the result does not need to be optimal.

Choose the right stopping criterion! There are two critical stopping crite-
ria for an approximation algorithm, namely running time and a known optimal
value. For the latter one there is an exception: When an algorithm can prove
the found solution to be optimal it is admissible to stop immediately. Unfor-
tunately, most algorithms fail to designate such a proof. But taking a known
optimal solution as an a-priori stopping value raises the question why to run
the approximation algorithm at all. In practical settings this criterion is purely
without any sense, since for any interesting input the optimal solution is surely
unknown. Usually, one seeks for near optimal performance values in relation
to some other quantity. For example, a good travelling salesman tour with re-
spect to low query times. But, tests with only these special data sets omit to
reflect performance in practice and fail to be reproducible. You will see dramat-
ically different running times for similar instances, depending on whether the
optimal solution is known or not. As an option one can think of determining a
performance measure needed to obtain optimal values, like a certain number of
iterations, and use this bound as stopping criterion for data sets whose optimal
value is not known. When switching machines, one has to apply benchmarking
and normalization as explained in Section 1.5.1.

Fixing a certain amount of time as the running time of an approximation algo-
rithms also contradicts the need of reproducibility. Note that “run-the-algorithm-
for-an-hour” is, in some sense, an undefined algorithm. Changes in the setup, e. g.,
all factors described in Section 1.2.3 that define the experiment like machine, op-
erating system, or implementation, lead easily to results of another quality. In
some settings this idea looks like the perfect choice to compare the quality of
algorithms, but if you run the same tests on a machine which is much faster, all
algorithms will, hopefully, perform better, which is less critical, while a change
in the relative ranking is more substantially.

Much better than time bounds are structural measures such as number of
branching steps, number of comparisons, or maximal depth of tree as intro-
duced in Section 1.2.2. Using such measures enables us to have a well-defined
algorithm, whose running time and quality of solution is expressible as a function
of this combinatorial count. At least the latter should be reproducible now. It is
possible to combine the solutions with the running time in relation to the com-
binatorial count. Listings of these relation allows future researchers to compare

43

their solutions to yours and to detect the influences two different environments
have. Another possibility of a stopping criterion may be a result that is close
to a bound. Such a bound must be easy to compute while close means to differ
from it only by a small factor, like 0.01. Consider, for example, a minimization
problem with an optimal value OPT for a certain instance and for which we
know a lower bound LB. The current approximation of a algorithm is given by
APP. If APP < 1.01LB we know that APP < 1.010PT, since LB < OPT,
and the algorithm decides to stop in this case. Note that this requires that the
approximation algorithm is able to improve its result with more invested time.

Joint Work Especially when comparing different algorithms one might expect
that common work is undesired by competitors. Obviously, no one is interested
in losing a game. But at the same time, you might spent more time on other
tasks than on implementing someone else’s algorithm as enthusiastically as your
algorithm, with the goal of an efficient implementation.

What prevents researchers from working together more closely? It is not
as worse as it seems. Indeed first steps are already done, e.g., by maintaining
common databases for instances. Of course, there are already collaborations
when running experiments, but too few at the large scale. If we assume for
now, that people of a community are willing to and decide to set up a common
laboratory, then we have to check what else needs to be considered in addition
to the previous suggestion.

Split the work! As said, no one has the time to do the whole job. One solu-
tion is that everyone who wants to participate in the common laboratory has to
concentrate only on his small specific task. In terms of algorithmic experiments
this equals to provide an efficient implementation of an algorithm. Using version
control, it is quite easy to commit new software to a common repository that
is set up following the general rules mentioned earlier. Of course, a single site
or person has to install the environment, but compared to implementing several
efficient algorithms, this is quite an easy task. A discerning reader may come up
with the question of how to ensure the same quality for all implementations such
as using the same new speed-up tricks. This is indeed a problem, the community
has to deal with. We propose to publish the results on a website.® Significant
changes in the performance values are immediately visible to everyone involved,
which results in asking questions and starting discussions, why some algorithm
performs much better than others. In general, implementing an algorithm needs
to follow some common guidelines to be constituted when starting the collabo-
ration. All questions related to this should be covered in Chapter 6.

Generating the actual results requires two following steps. First, one has to
select on which instance sets the algorithms should be tested. Second, one has
to run the experiments. Instances that should obviously use the same common

8 The community has to decide whether the site is publicly available or closed to
members.

44

format, either come from an instance database, or researchers can put their own
generated data sets also under version control and then combine it with algo-
rithms. In some cases, the group may agree to have a committee to decide which
combinations make sense. For the second task, the group may rely on some
scripts to be written. Actually, the whole procedure especially makes sense when
running the experiments regularly, while algorithms, or at least their implemen-
tations, are still under development, which means that there are still untested
ideas.

Finally, everyone profits from the collaboration since progress in some al-
gorithm is visible to all, and people start to discuss and to improve their own
implementation based on this knowledge. Additionally, a regular execution of
the committed experiments makes it easy to check out, how a new heuristic
and algorithmic idea performs. Since the work assigned to an individual is quite
small, while constantly comparing with others, the idea of a common laboratory
as presented here, seems to be a fruitful environment for experimental research
in algorithmics, and we encourage communities to install corporate laboratories.

1.6 Evaluating Your Data

After you have run your experimental setup you are left with a bunch of data.
The next task is to figure out whether this data supports your working hypothesis
and what else may be deduced from it.

The first thing to keep in mind is to look at the data without being biased by
your working hypothesis. Of course, the working hypothesis provides a starting
point for the investigations.

In general, it is important to observe patterns in the data and to try to
explain them. This explanation step may involve a more detailed analysis and
also new experiments. For example, you might discover that a branch-and-bound
algorithm using your new pruning rule performs worse than using the old one.
The reason for this might be either poor pruning or too much time spent for
the pruning so that in total it does not pay off. To investigate this question you
would need to look at the number of nodes visited by the algorithm and the
fraction of the time spent for pruning. Depending on your experimental setup,
you may be able to derive this additional data from the results you already have.
Otherwise you would need to rerun your experiments.

It usually pays off to let your experimental setup generate “raw” data, i.e.,
instead of averages and maybe minimum and maximum record all values, as
well as related quantities which might be of interest. Although this may create
large amounts of data it saves you from running your probably time-consuming
experiments often. Nevertheless you should always think about whether the data
you have is really sufficient to provide support or discrepancy for your hypothesis.
If this is not the case you need to gather more data.

The significance of your findings is increased if you can provide explana-
tions or more detailed accounts. For instance, it is not only interesting which
algorithm runs faster, but also where the respective running times come from,

45

i.e., which parts of the algorithm contribute to the running time. Sometimes
it is possible to look at more machine-independent running time measures, for
example nodes evaluated in a branch-and-bound algorithm, improvement steps
taken in a local search heuristic, or simply the number of iterations. It may be
worthwhile to investigate how these measures depend on instance size, since the
machine-independence of these measures gives better insights in the algorithm
rather than the computing environment.

So far we have only talked about the general evaluation philosophy. In the
following, we describe two ways of actually deriving something interesting from
your data. The first method is graphical analysis, which uses diagrams and plots
to discover patterns. Although this sounds simple, it is indeed a standard tool
of statisticians for arriving at good hypotheses. Graphical analysis provides key
insights and can also give some evidence for conclusions.

Then we give an overview of statistical analysis, which provides numerical
methods that can be used to check hypotheses, e. g., those obtained via graphi-
cal analysis. Statistical analysis is a tool that is widely used in other experimen-
tal areas, but has rarely been applied to experiments on algorithms. However,
Barr et al. [4, p. 22] recommend to employ statistical analysis wherever possible.

A drawback of statistical analysis is that it assumes certain experimental
setups which sometimes cannot be achieved. In this case, statistical analysis is
not applicable; but graphical analysis always is.

1.6.1 Graphical Analysis

Pictures and diagrams can be of great help to realize what is going on, since they
can represent vast amounts of data in a succinct way, at least if done properly.
This makes it easy to spot patterns which otherwise would be lost in a pile of
numbers or in large tables. The main issue here is to find the “right” diagram
that reveals the things we are interested in. This diagram serves two purposes:
First, it gives you some insight you did not have before and thus guides your
investigations. On the other hand, it may be useful to communicate your results
to other people. Further hints on this use will be given in Section 1.7.2.

There are some guidelines on using diagrams for analyzing numerical data
in the statistics literature. Other sources of inspiration on how to employ dia-
grams can be found in the literature on experimental algorithms. The paper of
Sanders [55] gives extensive advice on how to use diagrams to report experimen-
tal results in algorithmics and has been a major source for this section. Most of
this advice is helpful for analysis too, so we present it here. As examples, we will
just name a few types of diagrams commonly used in the experimental literature
and highlight their uses.

The diagram type most often encountered in the experimental literature on
algorithms plots some metric (e. g., running time) as a function of some param-
eter (e.g., input size of instance). The usual interpretation is that the variable
on the x-axis is “independent”, whereas the variable on the y-axis is “dependent”,
i.e., there is a functional relation between the two. This relation is most often
interpreted to imply causality, so this diagram type is most suited for settings

46

1.06
1.05

T T T T
lower bound ——
optimal 7

104 | upper bound

1.03 - : b
1.02 - : b
1.01 : —

0.99

0.98 L 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900

nodes of B&B tree explored

relative gap to optimal solution

Figure 1.1. A functional plot showing the typical behavior of branch-and-bound
algorithms. Displayed are the upper and lower bounds relative to the optimal
value evolving with the number of nodes of the tree that have been explored
so far. Every time an improved solution is found, the upper bound drops and
remains on this level for some time. Note that an optimal solution has been
found after about 370 nodes, but it takes another 550 nodes to raise the lower
bound such that optimality can be proven.

where assuming this causality is reasonable. In the example, this causality is
given: an increase in input size causes an increase in running time. We will call
this diagram type functional plot.

Figure 1.1 gives an example of a functional plot, which is in fact a special
case, namely a time series, where time is shown on the x-axis. Time is not given
explicitly here, but the number of nodes explored so far is of course some sort
of time-scale. Time series are often used to show the convergence of algorithms.

If functional plots are used to give average values, they should be augmented
to depict more information of the range of the data. One way to do this is
to provide error bars which indicate the standard deviation of the data. Even
more information is contained in box plots which characterize the underlying
distribution by five values and are explained in more detail later.

A diagram type often used to investigate the relationship of two variables
is the scatter plot. The graph of the scatter plot is just the set of points corre-
sponding to the measurements, see the example in Figure 1.2. It is adequate if it
is unclear which of the variables is “independent” or “dependent”. A scatter plot
can be applied if the data are not ordered quantities and thus cannot be associ-
ated to points on the axes. For instance, it is not clear in which order to put the
instances you measured solution quality for in order to come up with a suitable
functional diagram. Instead, you can use use a scatter plot relating instance size
to solution quality. A scatter plot can also be used to compare many different
measurements, e. g., the performance of many TSP heuristics in Figure 1.2.

Other famous diagram types are the bar chart and the histogram. The bar
chart consists of bars, whose heights represent numerical quantities and are
scaled proportionally. Thus they ease visual comparison and are appropriate

47

T T T T T T T
35 ['Spacefill 7
Strip
30 -
Karp
i)
c
3
a L NI i
S 25 NN
=
o
X
k=)
[} CHCI
T 20 i
=
[
>
[=]
@ Greedy
§ 15 b
[} Fl
% Savmgs_ CCA
il AppChristo
S 10 Christo-S T
o
=
5]
o
GENI-10
51 2opt
3opt
LK-IJM Ta
ol MLLK cLk Helsgaun i
1 1 1 1 1 1 1

001 01 1 10 100 1000 10000
running time in seconds

Figure 1.2. A scatter plot showing the approximation ratio and the running
time of some heuristics for the symmetric TSP from the report of Johnson and
McGeoch [31], p. 382. The data represents averages over a set of 10,000-city
random Euclidean instances. Each heuristic’s label depicts its average excess
over the Held-Karp lower bound, which is a well-known and rather good lower
bound for TSP problems. In this special case of a scatter plot the data points
are marked with the name of the heuristic they arise from.

48

250 T tree search mE—

lower bound ===

T T T
heuristic
200 E
150 —
100 E
i l _
0

heuristic off, heuristic off, heuristic on, heuristic on,
lower bound 1 lower bound 2 lower bound 1 lower bound 2

running time in seconds

Figure1.3. A bar chart showing hypothetical data for a branch-and-bound
algorithm. The diagram shows running time data for four different settings used
to solve the same instance. An initial heuristic can be used or not and there
is a choice between two kinds of lower bounds. Lower bound 1 runs fast and
gives weak lower bounds, whereas lower bound 2 runs longer and gives stronger
bounds.

Obviously, the better quality of the lower bounds provided by method 2 signifi-
cantly decreases the time spent for searching the tree, since fewer nodes need to
be visited. However, it only pays off to use lower bound 2 if the heuristic is not
used, since the total time is lowest if the heuristic and lower bound 1 are used.

in situations where multiple quantities need to be compared. Figure 1.3 gives an
example of a bar chart used for assessing the usual tradeoff on a branch-and-
bound algorithm.

A special kind of a bar chart with a different purpose is the histogram.
Histograms are used to analyse distributions of some quantity. To this end, the
range of the quantity is divided in so-called buckets, i. e., intervals of equal size,
and for each bucket the percentage of values lying in this interval gives the height
of the bar in a bar chart. Figure 1.4(a) shows a variant of a histogram known as
frequency polygon [37], where the data points of the histogram are connected by
lines instead of being represented by bars. This type of diagram is better suited
to comparing a set of distributions.

In statistics, distributions are often compared using the already mentioned
box plots, also known as box-and-whisker diagram. Box plots are based on quar-
tiles, which are special quantiles. The (empirical) p-quantile a, for 0 < p <1 of
a sample of n numbers x1,...,x, is defined as

p *= Z[pn]

i.e., ap is the smallest value such that at least pn values of the sample are less
than a,. The box plot uses quartiles, which are the quantiles ag, ag.25, ao.5, @0.75, @1.

49

Notice that ag is the minimum, ag 5 the median and a; the maximum of the dis-
tribution. A box plot of a distribution consists of a line ranging from ag to ay,
where the interval (ag 25, a0.75) is drawn as a larger box, which contains an extra
line indicating ag5. See Figure 1.4(b) for an example that gives the same data
as the frequency polygon diagram in Figure 1.4(a).

Of course, sometimes these diagram types do not fit the purpose or the data
to analyze. In this case you should try to make up your own kind of visualization
for your data or look into one of the many sources on statistical graphics and
exploratory data analysis, e. g., [63,62, 14].

Apart from choosing a suitable type of diagram there is a lot to be gained by
using appropriate scales on the axes and focusing on the most interesting part
of the diagram. Most common are linear and logarithmic scales, where the first
is appropriate if the numbers are in a relatively small range whereas the latter is
useful if the numbers are of different orders of magnitude. For instance, if one is
interested in the asymptotic behavior of the running times of some algorithms as
a function of the instance size, instance sizes usually grow by a constant factor in
order to cover instances sizes of different magnitudes with few instances. In that
case, both axes should be logarithmic, since instance sizes grow exponentially
by setup, and running times are exponential too if they are at least linear in
the input size. Similarly, if instance sizes grow additively by a constant but the
running times of the considered algorithms are known to be roughly exponential,
it is a good idea to use a logarithmic y-axis scale.

Sometimes the problem itself suggests a suitable unit for one of the axes,
which may even allow to get rid of one degree of freedom [55].

It may pay off to invest problem-specific knowledge to find an interesting
view on the data. Normalization, as suggested by Johnson [32], is an example.
Suppose you know a lower bound for a set of functions you want to compare, e. g.,
fi(n), fa(n) € 2(n). Then it may be helpful to look at fi(n) := fi(n)/n, fi(n) =
f2(n)/n instead of f1, fa, since the “common part” is factored out and thus
differences become more visible. Although you lose the possibility to directly
read off the values from the normalized diagram, it is still possible to get a good
intuition. As Sanders [55] points out it is usually possible to find intuitive names
for this new quantity.

A simpler “close-up” effect can be gained by adjusting the plotted range
[Ymin, Ymax| of the y-axis. However, this has the disadvantage that relative com-
parisons are no longer possible visually. The y-range can also be narrowed down
by clipping extreme values of clearly dominated algorithms.

To give an impression on what a good diagram can achieve, we cite the
following example from Johnson [32, p. 26]. Consider the data in Table 1.2,
which gives running time in seconds for five different algorithms, depending on
the input size. From the way the data is arranged it is obvious that the running
times of different algorithms are ranked in a consistent way over all instance
sizes.

In order to learn more about the data we generate a diagram. The first shot
is diagram 1.5(a) in Figure 1.5, which depicts just the data as-is on a linear

50

25
ZIBDIP —+—
— 2-OPT
N Bestinsert ---*---
20 + A
c/ / '
/
S 15f /
c / -
- “/ ,%’
S / ’
§ 10 | // %
/
|
5+ &
=
0 C 1 1 1 1 1 1
0 50 100 150 200 250 300 350

waiting time in minutes
(a) A frequency polygon plot of the waiting time distributions.

0 50 100 150 200 250 300 350

waiting time in minutes
(b) A box plot of the waiting time distributions.

Figure 1.4. Comparison of waiting time distributions achieved by some vehicle
dispatching algorithms. The data is taken from a computational study that com-
pares algorithms for dispatching service vehicles, where the customers’ waiting
times are the major quality of service criterion [24]. BestInsert and 2-OPT are
heuristics based on local search, whereas ZIBDIP is an exact algorithm based
on Integer Programming techniques.

Both diagrams indicate that optimization algorithms achieve a much better wait-
ing time distribution than simple heuristics. In the frequency polygon plot the
distribution of ZIBDIP is the one that is farthest left, indicating short waiting
times for many customers. In the box plot, all quartiles of ZIBDIP’s distribution
are smaller than the respective quartiles of the heuristics’ distributions, giving
the same conclusion.

20000 30000
T T

10000
T

(a) Raw data with linear axes.

0 210”5 4*10"5 6*10"5 8*10"5 106

1072 1073 107 1075 106

10M

"
102 1083 10M 10%5 106
(c) Data with both axes scaled loga-
rithmically and multiplied by 100 for
convenience.

51

20000 30000

10000

lm = - - - - 7!/ o ,g,«;,;;%
1 1 1 1 1

—

(b)

0”2 1073 1074 105 10"6

Data with a logarithmic x-scale.

0.0002 0.0003 0.0004 0.0005

0.0001

0

1

(d)

L i -
i
I
I
[]
u 5|
L |5}
/
/
/
|
L P o«
e X
L & & o
5| - X
= >
e K o _+
*/L I e
il 1 1 1 1

0”2 1073 1074 10%5 1076
Data with logarithmic x-axis and

normalized by nlogn, which is an

ove

rall lower bound.

Figure 1.5. Effect of different choices for the scaling of the diagram. Clearly, the
amount of information discernible from the diagram increases: In diagrams 1.5(c)
and 1.5(d) it is evident that the ordering of the algorithms is consistent. However,
only diagram 1.5(d) reveals that the performance of algorithms D and E are
asymptotically much worse than the lower bound, a fact that cannot be seen

directly from the table.

52

instance size ‘ 100 316 1000 3162 10000 31623 100000 316227 1000000

Algorithm A | 0.00 0.02 0.08 0.29 1.05 5.46 23.0 89.6 377

Algorithm B | 0.00 0.03 0.11 0.35 1.38 6.50 30.6 173.3 669

Algorithm C | 0.01 0.06 0.21 0.71 2.79 10.98 42.7 329.5 1253

Algorithm D | 0.02 0.09 043 1.64 6.98 37.51 192.4 789.7 5465

Algorithm E | 0.03 0.14 0.57 2.14 10.42 55.36 369.4 5775.0 33414
Table 1.2. Running time data of Johnson’s example [32].

scale. Algorithms E and D seem to be much worse than the other three on large
instances. However, there is no clear picture for smaller instances, since the plots
essentially coincide. Furthermore, almost all data points are in the left half of
the diagram. Changing to a logarithmic x-scale (diagram 1.5(b)) fixes this, but
still there is much coincidence of the plots. If both axes are logarithmic (di-
agram 1.5(c)), the consistent ranking of the running times becomes apparent.
Now all five plots seem to have approximately the same slope, which would in-
dicate the same asymptotic behavior. We know from the first diagram that this
is not quite true. Let us now put some more knowledge in the game. Johnson
states that there is a lower bound of ©(nlogn) for all algorithms. We can use this
to normalize the running time of the algorithms and still keep the logarithmic
x-axis to obtain diagram 1.5(d). This diagram is really revealing: It shows the
consistent ranking, brings out the asymptotically worse running times of algo-
rithms E and D, and indicates that the other three algorithms are asymptotically
optimal (up to a constant).

Some of the suggestions involved a lot of work, e.g., playing around with
different types of diagrams, transformation of the data, looking at different com-
binations of measures and so on. However, much of this work can be automated
using scripting languages, which even makes it fun to do these things. For exam-
ple, languages like Perl and Python can be used to extract exactly those numbers
you are currently interested in and to convert them in a format suitable for fur-
ther processing. This processing can be done by a spreadsheet application or a
graph-drawing scripting language such as gnuplot.

You should also keep in mind that your data has only a limited precision,
which is usually smaller than the number of digits available. This is especially
true for running times, which often vary much depending on factors you cannot
control. This variance can be reduced by producing multiple measurements and
using the average or more sophisticated variance reduction methods mentioned
in Section 1.2.4. The danger in pretending too much precision is to end up
analyzing the noise of the measurements.

1.6.2 Statistical Analysis

The purpose of this subsection is to give an impression of how statistical analysis
works and how it can be applied to analyzing data describing the performance

53

of algorithms. We will review the basic concepts and main ideas and give specific
examples from the literature.

Why should one be willing to use statistical analysis when the kind of ad-
hoc numerical data analysis used before seemed appropriate? One reason is that
statistical analysis, applied properly, can give much stronger support for claims
or indicate that claims are not justified by the data. It is a tool for assessing the
explanatory power and significance of your data. Moreover, you can gain a deeper
understanding of the data, for instance, it is possible to analyze the impact
of parameter choices on the performance of the algorithm and to distinguish
between significant and insignificant parameters. An example will be discussed
later in this section. Finally, a statistical analysis of your data may suggest
directions for further experiments.

A key ingredient for a proper and successful statistical analysis is a carefully
designed experiment. In fact, there is a whole branch in statistics concerned with
this, naturally it is called Design of Ezperiments (DOE). Barret al. [4, p. 20]
suggest that “all doctoral students of operations research should receive training
in DOE”. Even if you do not use its methods, knowing the methodology leads
to clearer thinking about experiments and their pitfalls.

DOE methodology is widely used in other experimental fields, such as psy-
chology, the social sciences or industrial product development. It provides meth-
ods for designing experiments such that certain systematic errors can be elim-
inated or at least reduced and the influence of nuisance factors can be con-
trolled. Furthermore, there are some well-established so-called experimental de-
signs, which describe how to carry out the experiment. For these designs, DOE
provides analysis methods as well as methods to check the model assumptions a
posteriori.

The general tool to analyze the data is hypothesis testing. A statistical test
is characterized by a so-called null hypothesis, assumptions on the experiment,
i.e., how the data is generated, and a test statistic, which is a number computed
from the data. The purpose of the test is to check whether some data is consis-
tent with the null hypothesis or not. The null hypothesis is the converse of the
research hypothesis of the experimenter, and the research hypothesis makes up
the alternative hypothesis. If the null hypothesis is not consistent with the data,
it is rejected and there is some evidence that the research hypothesis is true.

Before doing the test, you need to choose a number 0 < « < 1, the significance
level, which is something like the confidence you want to achieve. For example,
a = 0.05 tells you that you are ready to accept 5% error, i.e., when doing the
test very often (of course with different data), the result may be wrong for 5%
of the trials. Then you just compute the test statistic for your data, compute or
look up the so-called p-value of the statistic. If the p-value is smaller than the
chosen significance level, the null hypothesis is rejected.

The formal background of hypothesis testing is the following. It is assumed
that the assumptions and the null hypothesis hold. One can then compute the
probability that the realization of the test statistic is obtained under these as-
sumptions; this is exactly the p-value. If this probability is very low, in particular

54

smaller than the confidence level, this result is rather unlikely and thus provides
evidence against the null hypothesis, leading to its rejection.

As an example, we will describe the famous sign test (see [58]). It works on
a sample (1, ...,2,) of n real numbers. The assumptions are that all the x; are
drawn independently from the same distribution. The null hypothesis is that 0
is the median of the distribution. To compute the test statistic S, remove all z;
that are 0 and decrease n accordingly. Now define S by

S = |{i |z > 0}]

Notice that only the sign of z; matters, hence the name of the test. If the null
hypothesis is true, the probability that x; is greater than zero is the same as that
it is smaller than zero, i.e., this probability is 1/2. Therefore, S is distributed
according to a binomial distribution with parameters 1/2 and n. Suppose the
observed value of S is k, w.l.0.g. k > n/2. Now the p-value is easy to compute:
It is just the probability that S is at least k, that is 1/2™ "7, (T:) For example,
if n =15 and k = 12 we get a p-value of 0.018, leading to a rejection of the null
hypothesis at a significance level of &« = 0.05. Instead, we have some evidence
that the real median is greater than 0. Note that we could not conclude this if
we selected a significance level of o = 0.01.

A standard application of the sign test is to compare pairwise samples from
two different distributions. For comparing two algorithms, suppose there are two
samples (z1,...,2,) and (y1,...,yn) where x; and y; are performance measures
of both algorithms on the same instance ¢. The question is: Is it true that the
first algorithm is better than the second? To answer this question, consider the
sequence of differences, given by d; = y; —x; and do the sign test on this sample.
The null hypothesis is that the medians of the performance distribution are
equal, i.e., the performance of both algorithms is the same. If sufficiently many
d; are positive, this null hypothesis is rejected and there is evidence that the first
algorithm is better. Notice, however, that the null hypothesis is also rejected if
there are too few positive d;, which would indicate that the second algorithm is
better.

One final note about the assumptions of the sign test in this application.
These were that the differences are drawn independently and from the same
distribution. Clearly, the assumption “same distribution” is no problem, since we
look at the distribution of running times difference on all possible instances. If the
instances are generated independently at random, the independence assumption
is obviously fulfilled. However, this is not true if we look at selected (real-world)
instances. Applying the sign test in such a setting is only valid if we can be
sure that the selected instances are reasonably representative and diverse or we
restrict ourselves to instances that “look like these sample instances”.

Let us now turn to some example applications of statistical analysis from the
literature.

The Sign Test and Heuristics for the TSP This example is taken from
Golden and Stewart [20], who compare a new heuristic for the Euclidean Travel-

55

ing Salesman Problem (TSP). They also give some introduction to the statistical
methods used.

Golden and Stewart introduce the new algorithm CCAO which combines
four techniques. It starts constructing a partial tour from the convex hull of
the cities, includes remaining cities via criterions known as cheapest insertion,
angle selection and finally improve this solution via a postprocessor known as
Or-opt. Other successful postprocessors are 2-opt and 3-opt, which try to find
better tours by exchanging 2 or 3 edges of the current tour until no further
improvement is possible. It is known that solutions produced by 3-opt are usually
a bit better than those of Or-opt, which in turn are much better than those of
2-opt. Unluckily, the gain in solution quality comes at the price of substantially
longer running time.

The study is based on only eight instances, which seem to be among the
largest ones that have been published at that time (1985). It is not clear that this
selection of instances is representative as required for a good test set as explained
in Section 1.4. Moreover, usually a larger number of samples is required in order
to draw statistical significant conclusions. In fact, Design of Experiments theory
provides methods to compute in advance how many samples are necessary to
reach a given significance level. However, the main purpose of the paper is to
promote the use of statistical methods for assessing algorithms.

In a first experiment the authors compare CCAQO to other heuristics. Apply-
ing the sign test to assess solution quality indicates that CCAO is better than
heuristics with a weak postprocessor, i.e., 2-opt. They also realize that CCAO
is as good as those with a strong postprocessor, i.e., Or-opt or 3-opt.

In their second experiment they evaluate the influence of accuracy and effi-
ciency of the postprocessor. This is done by combining the first three ingredients
of their algorithm (“CCA”) with each of the three postprocessor and the value
without postprocessing. Applying the sign test again, they are able to verify the
following:

— The running time of 2-opt is smaller than that of Or-opt which is smaller
than 3-opt on all 8 instances.

— The solution quality of 2-opt is worse than both Or-opt and 3-opt.

— The solution quality of Or-opt and 3-opt is statistically indistinguishable.

They also did further experiments to assess the contribution of the algo-
rithm’s ingredients.

There is an extension to the sign test, namely the Wilcoxon test, which takes
the value of the differences into account and allows stronger conclusions at the
price of stricter assumptions. Although applicable, Golden and Stewart did not
apply the Wilcoxon test for their worked-out analyses, but encourage the reader
to do so.

Using Design of Experiments Methods to Assess Network Algorithms
Amini and Barr [2] conducted an elaborate study regarding the performance

56

of network algorithms for reoptimization, as it often arises e.g., in branch-
and-bound algorithms. Their goal is to find out which of the three algorithms
PROPT, DROPT and KROPT is best suited for reoptimization.

To this end, they want to perform the following kind of experiment. Starting
from a base instance they generate a series of sub-instances, which are randomly
modified versions of the base instance, with only small changes between them.
This is typical for reoptimization-based algorithms.

Amini and Barr study the following five factors:

Factor Levels

class of network problem transportation, transshipment
problem size small, medium, large

type of change cost, bound, RHS

percentage change 5%, 20%

type of reoptimizer PROPT, DROPT, KROPT

Two other factors, the number of sub-instances per series and the number of
changes, are fixed to 200 and 20, respectively, after some pilot experiments
(which are evaluated by statistical analysis). All in all there are 108 experimental
conditions to be studied.

The analysis is based on a split plot design, which is an advanced design from
the theory of Design of Experiments, see e.g., [11]). A main feature of the split
plot design is that the influence of a subset of the factors is better estimated than
the influence of combinations of the remaining factors, which are called blocked
factors. However, a split plot design enables good statements about the influence
of non-blocked factors for a fized combination of the blocked factors. In this case,
the blocked factors are problem class and size. This means that the experiment
yields insight about how the non-blocked factors (type of change, percentage
change, and reoptimizer) should be combined for each problem class / problem
size combination, which is really interesting.

The actual experiment is run as follows: In advance, four base instances per
problem class and problem size combination have been fixed. Now one out of
the 108 conditions is selected at random, the base instance is chosen randomly
and 200 subproblems according to the remaining parameters are generated ran-
domly. Finally, all three reoptimizers are run on them and the total CPU time
is recorded. All in all, 86,400 subproblems are solved.

The authors report the following results obtained by using Tukey’s HSD
(Honestly Significant Difference) Test [56, 11]. This test yielded detailed infor-
mation on the influence of combinations of factors. For example, considering the
two factors type of change and reoptimizer, the HSD test indicates that it is best
to choose PROPT if cost coefficients have changed, whereas DROPT deals best
with changes to the bounds or the RHS. Looking at the four factors problem
class, type of change, problem size and reoptimizer, the TSD results were (cf.
Table 1.3):

— transportation problems:
e PROPT performs best for medium and large problems with cost changes

57

e DROPT performs best for bound changes on large problems and for RHS
changes on medium and large problems

e on all other combinations, PROPT and DROPT are indistinguishable,
but better than KROPT

— transshipment problems:

e PROPT performs again best for medium and large problems with cost
changes

e all three algorithms are indistinguishable for bound and cost changes on
small problems

e in the remaining cases, PROPT and DROPT are indistinguishable, but
better than KROPT

All of these results were obtained using a significance level of 5%.

It is important to note that the careful design of the experiment allowed the
application of HSD test, which in turn provided very detailed information on
when to choose which algorithm.

Linear Regression for Comparing Linear Programming (LP) Algo-
rithms In their overview paper on statistical analysis of algorithms Coffin and
Saltzmann [7] propose a method for comparing algorithms they call head-to-
head comparison. They illustrate this method on data from the literature, which
evaluates the interior-point LP solver OB1 to the simplex-algorithm-based LP
solver MINOS.

The fundamental idea of head-to-head comparison is to express the running
time of one algorithm depending on the running of the other, allowing a direct
comparison. Coffin and Saltzmann propose the following dependence

Yy = ﬁowﬁl €,

where and y denote the running time of MINOS and OB1, respectively, € is a
(random) error and [y, 31 are unknown constants. This relation has interesting
desired properties. First, if the running time for MINOS is 0, the running time
for OB1 is 0, too. Second, assuming Sy, 51 > 0 we have that if the running of
MINOS increases, those of OB1 does also. Notice that this need not hold for
particular instances (differences there go in the error €), but describes a general
trend. Finally, 31 = 1 indicates that the running times are proportional. A
drawback of this model is that as the running time of MINOS increases, so does
the variance of OB1’s running time, which is undesired since it hinders using
tests and regression methods.
This drawback can be alleviated if using a log-transformation, yielding

logy = log By + B1 logz + loge.

This transformation has two positive aspects. Once, it reduces variance. Second,
we now have essentially a linear model. Thus linear regression can be used, giving
Bo = 1.18 and (1 = 0.7198 as estimates. Furthermore, a hypothesis test for the

58

(a) Results for transportation problems

type of change | problem size | KROPT | PROPT | DROPT
cost small o o
medium
large
bound small
medium
large
RHS small o
medium
large

O O|e e

e ¢ O(®e@ O O

(b) Results for transshipment problems
type of change | problem size | KROPT | PROPT | DROPT

cost small o o o
medium
large
bound small o
medium
large
RHS small -
medium
large

Table 1.3. Dominance relations between PROPT, DROPT, and KROPT for the
4-factor combination (problem class, problem size, type of change, reoptimizer)
extracted from the experimental data of Amini and Barr [2]. A “e” indicates
that this algorithm dominates the others, whereas a “o” indicates algorithms
that could not be distinguished from each other, but dominated the remaining
algorithms. Finally, situations in which no results could be obtained are marked

W@ »

® O O|e o

o O

59

null hypothesis 3; = 1 can be done, yielding to reject this hypothesis at a p-value
of 1074, Thus it is reasonable to assume that OB1 is asymptotically faster than
MINOS.

Apart from this case study, Coffin and Saltzmann give many more case stud-
ies and lots of hints for statistical analysis of experiments on algorithms. The
examples presented here are supposed to give a flavor of how statistical analy-
sis can be applied to experimental analysis of algorithms. It has to be stressed,
however, that the methods of statistical analysis have to be applied with great
care to get meaningful results. We will say a little bit more on this in the next
section.

1.6.3 Pitfalls for Data Analysis

So far we introduced some methods to analyze experimental data. We want to
conclude this section by mentioning common pitfalls to watch out for.

Graphical Analysis As mentioned in the section on graphical analysis, on the
one hand a good diagram can greatly contribute to the analysis. On the other
hand, using a bad diagram can be misleading. Therefore it is important to use a
diagram type that is suitable for the type of analysis done. For instance, it may
happen that due to a logarithmic scale a small absolute difference seems to be
substantial and thus leads to wrong conclusions.

As Bast and Weber [5] point out, one has to be careful when dealing with
averages, especially if different performance measures are involved. In particular,
if algorithm A is better on average than algorithm B with respect to one per-
formance measure, this does not say anything about the relation with respect
to another performance measure, even if there is a monotone transformation
between the performance measures. To see this, just suppose that algorithm A
is good on average for the first performance measure, but is very bad on some
instances, whereas algorithm B is not as good, but never very bad. If the other
performance measure now penalizes bad behavior more strongly, algorithm B
may become better than algorithm A. Bast and Weber emphasise that even
if the standard deviation intervals that are usually indicated by error bars are
disjoint, it is possible that the order of the averages reverses.

The solution to this issue is of course to evaluate each performance measure
on the raw data and only average afterwards. This is another reason for collecting
raw data instead of averaged or aggregated data.

Statistical Analysis Every statistical test requires some assumptions on the
stochastic nature of the data. A statistical test is invalid if these assumptions
are violated and therefore conclusions drawn from them may not be trustworthy.
Therefore, it has to be checked and possibly discussed whether the assumptions
are reasonable. If some of them are not, it is often possible to ressort to some
weaker test. Furthermore, some tests are more robust than others. The literature
on nonparametric statistics usually contains hints on the robustness of tests and
the assumptions required, see e. g., [59, 8, 58].

60

A similar problem may arise when analysing data from a designed experi-
ment. One usually uses some kind of probabilistic model for the data. For any
analysis to make sense, the model should be appropriate in the sense that it “fits”
the data (or vice versa). There are some ways to test the “fit” and the fulfillment
of the assumptions which are discussed in the DOE literature ([11]). These tests
should always be done before any analysis is carried out. Furthermore, the type
of analysis done has to be applicable to the design and model used.

1.7 Reporting Your Results

When reporting your results you usually want to convince the reader of the
scientific merit of the work. An important requirement for this is that you raise
and answer interesting questions. However, for experimental work it is equally
important that the results are reproducable. When talking about reproducibility,
we do not mean that an experiment can be redone exactly as it was, since this
is unachievable, given the rapid development of computing equipment. Instead,
we think of a weaker form of reproducibility: An experiment is reproducable, if a
very similar experiment can be set up which gives the same quantitative results
and conclusions.

These requirements lead to some principles for reporting which are considered
to be good practice [32,4]) and will be discussed in detail here. Finally, we provide
hints on good use of tables and diagrams for reporting experimental data and
conclusions from it.

1.7.1 Principles for Reporting

This section is organized around the following principles for good reporting,
which are slightly adapted from the list of principles given in Johnson [32].

— Ensure newsworthiness of results.

— Indicate relation to earlier work.

— Ensure reproducibility and comparability,

Report the full story.

— Draw well-justified conclusions and look for explanations.
— Present your data in informative ways.

Ensure Newsworthiness of Results. This principle directly relates to the scientific
merit of your experimental work. Clearly, it is necessary to deal with interest-
ing questions on a sound basis, regarding your experimental methodology. As
mentioned earlier, it is often more appealing to go beyond pure running time
comparison. These questions were explained in more detail in Section 1.2 and
others.

A good report states clearly the motivation for the work and describes the
context of it, explaining the specific contribution of this work. The motivation
may come from e.g., questions raised in earlier experimental papers, assessing
the “practical” performance of algorithms studied only theoretically, and from
real-world applications.

61

Indicate Relation to FEarlier Work. Of course, you should have read the relevant
literature to know what already has been done.

You should compare your results to those from the literature. This compari-
son can be a hard task for a number of reasons. First of all, you will most likely
be using different computing hardware and software. Since running times are
influenced by many factors, e. g., machine speed and architecture, compiler, and
sophistication of implementation, a direct comparison is not very meaningful.
Another obstacle is that earlier publications may not focus on aspects you are
interested in, use other performance measures and so on.

A part of this difficulty can be overcome if it is possible to use the test set
and the implementation of the original work. If available, you should use these.
How to proceed when they are not available has been discussed in Section 1.5.1.
The main benefit of using the original implementation is that you get the best
comparability possible, since you can run the original algorithm and your new
one on the same equipment.

A fallback method to make running times of earlier papers roughly compa-
rable to your measurements is to estimate the relative speed difference of the
machines. This can be done using benchmark values obtainable for both ma-
chines. Sometimes problem-specific benchmarks are available. For instance, the
DIMACS Implementation Challenge on the Traveling Salesman Problem [31,13]
employed a benchmark implementation to normalize the running times across
a wide range of different platforms. To this end, every participant had to run
this benchmark implementation on his machine and to report the running time,
which in turn was used for normalization. Johnson and McGeoch [31] report
that accuracy was about a factor of 2, which was sufficient for the running time
differences that occurred.

In any case you should clearly report on how you tried to make these values
comparable.

Ensuring Reproducibility and Comparability. This principle is in some sense the
counterpart of the preceding one. The goal is to make life of future researchers
who want to build on your work easier, which essentially means providing enough
detail to allow qualitative reproduction of your results.

To this end, you should give a detailed description of the experimental setup.
This encompasses information such as machine type, processor number and pro-
cessor speed, operating system, implementation language and compiler used, but
also experimental conditions like run time or space limits. If you used a generator
to create test instances you need to describe the generator and the parameters
used for test set creation, too.

Of course it is necessary to describe the implementation of your algorithm
detailed enough to facilitate reproduction. This implies that you mention and
describe all non-straightforward implementation details which have a significant
impact on your results. For complex heuristics, this includes the stopping rule
used (if the heuristic has no natural way to terminate) and the values of potential
parameters used to achieve your results. These parameters must not be set on
a per-instance basis, since this is not generizable. However, you may use some

62

kind of rule to determine parameters from instance parameters which then needs
to be described as well.

The best way to ensure reproducibility is to publish both the instances used
for the experiment and the source code of your implementation. Some journals
already support and even encourage this. For example, the ACM Journal on Ex-
perimental Algorithmics invites submitters to also publish supplementary files,
which can be source code or data files. Publishing the source code requires a
certain level of documentation to make it useful for other people. You also have
to make sure that the data you publish is actually consistent with the source
code, i. e., binaries will produce essentially this data.

Instances should be made available in a machine-readable, well-known and
well-documented format, cf. Section 1.4. If there is already an instance library
for this specific problem, it may be possible to extend the library by some of
your instances, since instance libraries are often maintained to reflect progress.
Although it would suffice to publish the instance generator used, it is usually
better to make the actually used instances available.

It is a good idea to archive the raw data of your experiments (not just the
“processed” data used and given in the report) at a safe place so you can later
access it. This can be useful if you or somebody else is interested in doing further
research. Again, version control systems can be useful here.

Report the Full Story. It is good scientific practice to report results (i. e., data) as
they are. This also implies that anomalous results contradicting your conclusions
must not be omitted. Instead, it is worthwhile to investigate their origin and, if
no explanation can be found, to state this clearly. Any anomalies in the data,
e.g., those contradicting your or other’s results, should be noted in the paper.
It is then clear that their occurrence is not due to typographical or other error.

When reporting running times for heuristics without stopping criterion (such
as local search) do report the total running time used by the heuristic, not
just the time until the best solution was found. As Johnson [32] points out,
considering only the time for the best solutions essentially means pretending
clairvoyance of the heuristic, since it has no way to decide that no better solution
will be found. The running time should also include time spent for preprocessing
and setup, which should be given separately. Reporting the total running time
of the heuristic gives a clear indication of the effort needed to get this solution
and allows better comparison to competing methods.

For similar reasons, it is also desirable to report the total running time in-
vested in your computational study, since omitting this time can give a distorted
picture. For instance, if it took some time to find the parameters that make a
heuristic perform well the real effort to get good solutions with this heuristic
is much larger than just running the heuristic once with those parameters. A
similar effort might be necessary to suit the heuristic to differently structured
instances. It is also interesting to know how much you gained by tuning the pa-
rameters, i.e., you should indicate the typical solution quality before and after
tuning.

63

When evaluating heuristics it is important to assess the quality of solutions,
since this allows quantifying the time / quality tradeoff when using this heuristic.
Preferably, you should compare the heuristic to exact solution values. If exact
solutions turn out to be too expensive to compute, you may resort to good
lower bounds which can be obtained by e. g., Linear Programming or Lagrangian
relaxations. As a last resort, you can compare solution values to best-known ones
or to those of other heuristics.

The purpose of heuristics is to produce hopefully good solutions in much
shorter time than exact methods can. Complex heuristics may produce a se-
quence of improving best solutions. For these you should indicate how solution
quality evolves in time. This can be done using diagrams, showing solution qual-
ity as a time series. Another possibility suggested by Barr et al. [4] is to use
derived descriptive measures. They suggest the ratio

time to within 5% of best
time to best found

T0.05 =

which measures how fast the heuristic converges to its best attainable value.
This metric is not suitable for comparing different algorithms, since the value of
the best solution found may differ significantly.

Another interesting point to investigate is how solution quality changes with
growing instance size. In fact, this is just a special case of robustness, which
is discussed in Section 3.5: An algorithm should perform well on a large set of
instances. Similarly, if the behavior of a heuristic depends on some parameters,
its solution quality should not deteriorate with small changes of “good” parameter
settings. The robustness of an algorithm should be addressed and reported, for
example by giving standard deviations for the quality in a quality-time graph [4],
indicating the spread of quality after a fixed computation time for the whole
instance set studied.

To get a better understanding of a complex algorithm and its specific features,
the contribution of each strategy or phase should be assessed and reported on.

You should try to look at more machine-independent running time measures,
as suggested in Section 1.6 and account on these findings in detail.

It is also worthwhile to mention unsuccessful algorithmic ideas that you tried.
This may save other researchers from spending further effort on them. For in-
stance, if your heuristic was not able to find a feasible solution on a certain class
of instances, this is something to report.

Draw Well-justified Conclusions and Look for Ezxplanations. Reporting on an
experimental study requires interpreting the data. It is clearly not sufficient
to just describe the algorithm and to give a table of numbers. The data you
provide in your report needs to be explained in a convincing and consistent way
by suitable claims. Be sure to support your claims with convincing diagrams and
tables. These must not hide any contradicting data; instead, you need to argue
why they can be neglected for your claims. Of course your claims need to be
supported by the data.

64

In order to support or challenge your claims, it may be worthwhile to employ
statistical analysis (see Section 1.6.2). This can provide additional evidence and
confidence or rejection for your claims.

As mentioned several times before and recommended in the literature [32,16],
you should look at and report on as large instances as possible. Looking at huge
instance sizes provides stronger support for claims, especially on asymptotic
behavior. Moreover, the reader gets an impression on how the algorithms scale
with problem size.

Present Data in Informative Ways. Large amounts of numbers are usually con-
sidered to be rather dull and boring. This need not be the case, however, it is
necessary to present the data in interesting and revealing ways. Using appropri-
ate diagrams and clearly-structured tables can help a lot here. See Section 1.7.2
for more detailed hints.

Statistical methods to support your claims are best used for general conclu-
sions, such as recovering trends and correlations between variables. Usually, it
is not interesting to do lots of experimental runs just to get tight confidence
intervals, since these apply only to the specific setting.

You should also avoid reporting too much data. If you generated much data
for many instances you should try to cluster similar instances and report repre-
sentive results for each cluster. It is also possible to report averages and similar
summary statistics (e. g., minimum and maximum, medians, quartiles) to get an
impression of the results. The full data could be put in the appendix or made
available electronically via the Internet. You can safely omit the results for dom-
inated algorithms, but you should indicate in the paper that they are dominated
and therefore dropped.

1.7.2 Presenting Data in Diagrams and Tables

Experimental studies usually yield large amounts of data which are in a sense
the result of the study and thus need to be reported on in some sensible way.
There are two ways to present that data: pictures (i.e., diagrams) and tables.
Both have their advantages and drawbacks which will be discussed here. We also
give advice on how to make best use out of them.

Diagrams are useful for recognizing patterns, trends, etc.; their use for ana-
lyzing data has already been discussed. They give a quick impression and quick
overview and can make vast amounts of data comprehendable and ease com-
parison of different data sets. However, they tend to hide details (which is an
advantage, too) and make it hard to figure out exact values. Tables, on the other
hand, reporting the data as it is, although this might be hard to interpret.

The natural conclusion is to use tables for small amounts of data. Tufte [62,
p. 56] recommends using tables for sets of 20 numbers or less. Tables may also
be useful to report exact values for larger data sets in addition to some diagram.
Larger tables are particularly out of place at oral presentations [44].

65

Tables When using tables (especially larger ones) it is important to structure
them in order to highlight important information and aspects of the data [32].
Tables can often be made more accessible by choosing a sensible ordering of rows
and columns. The sorting should reflect properties of the data. For instance, the
rows in Table 1.2 on page 52 have been ordered according to the running time
of the algorithms, which makes the the consistent ranking of the algorithms
apparent. Similarly, it is better to sort instances by their size than their names.

Tables should not only give the data as measured, but also provide interesting
related information contributing to the interpretation of the data. The obvious
example is when you give a solution value and a lower bound, then you should
include a column indicating the resulting optimality gap.

Of course, tables and the reported data need to be labeled properly. This
encompasses stating the exact meaning of the rows and the columns and the units
of quantities as well as further details important for interpretation. If you include
numbers from different sources, try to make them comparable and indicate their
origin.

Diagrams Most fundamental things for creating good diagrams have already
been discussed in Section 1.6.1 since they are useful both for data analysis and
presentation. We therefore focus on more detailed hints which become more
important for reporting.

The general advice is to avoid too much information in one diagram. Al-
though you as the expert for your experimental setup and analysis can probably
cope with more information in one diagram, this same diagram may be too com-
plicated for your audience. One issue might be too many data sets in a diagram,
e.g., too many curves. The number of curves which can be displayed in a rea-
sonable way depends on their overall complexity or information density. If the
curves lie close together or you cannot tell on first sight which is above or below
these are indications that you should think about improving the diagram.

The following hints on how to cope with too many curves have been collected
by Sanders [55]. A first possibility is to consider different scaling of the axes as
explained in Section 1.6.1 in order to find a better view on the data. It may
be possible to remove dominated curves and to indicate that removal. In some
cases, similar curves can be combined to a single one. For example, to show that
an algorithm is always better than some other ones it suffices to plot the best
result of all the other algorithms. Finally, you should consider decomposing a
diagram into different ones with differing y-scales, both showing only a subset
of the original plots.

Consistency in the diagram is important, since inconsistency is confusing
and tends to distract the reader’s attention to resolving that discrepancy. Con-
sistency is reflected in many details. For example, if results for one algorithm are
presented in several diagrams, be sure to use the same line and point styles and
color for plots of that algorithm. Similarly, algorithm labels for corresponding
plots should be in the top-down order of the plots.

The design of the diagram should be as clean as possible. You should use
marks for data points which are clearly distinguishable, but not too large. Data

66

points belonging to the same data set can be connected to better indicate that
they belong together. However, as Johnson [32] points out, such lines implicitly
suggest a trend and/or that interpolation between the data points is possible
or sensible. Connecting the points should therefore be avoided if possible. If
necessary, you should use unobtrusive (e. g., thin gray) straight lines to do this
— splines are a no-no since they amplify the implicit “interpolation” claim.

There are some books on diagram design, for instance the book of Tufte [62].
He introduces the principle of data-ink maximization which essentially requires
to make best use of the ink used to draw the diagram. For example, he suggests
to avoid grids since they usually interfere too much with the data drawn. He
also gives hints and examples on how to improve existing diagrams as well as
inspiration to design new ones.

Finally, your diagrams need to be labelled clearly and completely. Ideally,
they are understandable on their own, without having to read the corresponding
text passages. To achieve this, you should try to succinctly provide all infor-
mation needed for interpretation. At the least, you should explain or mention
unusual axis scales (e. g., log, normalized), what has been measured and is dis-
played. You should highlight important features and any specialty of your dia-
gram.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, New Jersey,
1993.

2. Mohammad M. Amini and Richard S. Barr. Network reoptimization algorithms:
A statistically designed comparison. ORSA Journal on Computing, 5(4):395-409,
1993.

3. David L. Applegate, Robert E. Bixby, Vasek Chvéatal, and William J. Cook. The
Traveling Salesman Problem: A Computational Study. Princeton University Press,
2006.

4. Richard S. Barr, Bruce L. Golden, James P. Kelly, Mauricio G. C. Resende, and
William R. Stewart Jr. Designing and reporting on computational experiments
with heuristic methods. Journal of Heuristics, 1(1):9-32, 1995.

5. Holger Bast and Ingmar Weber. Don’t compare averages. In Sotiris E. Nikolet-
seas, editor, 4th International Workshop on Experimental and Efficient Algorithms
(WEA), number 3503 in Lecture Notes in Computer Science, pages 67-76. Springer,
2005.

6. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Computing, 25(6):1305-1317, 1996.

7. Marie Coffin and Matthew J. Saltzmann. Statistical analysis of computational
tests of algorithms and heuristics. INFORMS Journal on Computing, 12(1):24-44,
2000.

8. William J. Conover. Practical Nonparametric Statistic. John Wiley & Sons, 1980.

9. Harlan P. Crowder, Ron S. Dembo, and John M. Mulvey. Reporting computational
experiments in mathematical programming. Mathematical Programming, 15:316—
329, 1978.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

67

Harlan P. Crowder, Ron S. Dembo, and John M. Mulvey. On reporting computa-
tional experiments with mathematical software. ACM Transactions on Mathemat-
ical Software, 5(2):193-203, 1979.

Angela Dean and Daniel Voss. Design and Analysis of Experiments. Springer Texts
in Statistics. Springer, 1999.

DIMACS Implementation Challenges. http://dimacs.rutgers.edu/
Challenges/, 2006.

DIMACS TSP challenge. http://www.research.att.com/~dsj/chtsp/, 2006.
Exploratory data analysis. http://www.itl.nist.gov/div898/handbook/eda/
eda.htm, 2006.

Christodoulos A. Floudas and Panos M. Pardalos. A Collection of Test Problems
for Constrained Global Optimization Problems, volume 455 of Lecture Notes in
Computer Science. Springer, 1990.

Ian P. Gent, Stuart A. Grant, Ewen Maclntyre, Patrick Prosser, Paul Shaw, Bar-
bara M. Smith, and Toby Walsh. How not to do it. Technical Report 97.27, School
of Computer Studies, University of Leeds, May 1997.

Tan P. Gent and Toby Walsh. CSPLIB: a benchmark library for constraints. Techni-
cal Report APES-09-1999, Department of Computer Science, University of Strath-
clyde, Glasgow, 1999.

Tan P. Gent and Toby Walsh. CSPLIB: A benchmark library for constraints. In
Joxan Jaffar, editor, Principles and Practice of Constraint Programming - CP’99,
5th International Conference, Alexandria, Virginia, USA, October 11-14, 1999,
Proceedings, volume 1713 of Lecture Notes in Computer Science, pages 480—481.
Springer, 1999.

Andrew V. Goldberg and Bernard M. E. Moret. Combinatorial algorithms test sets
[CATS]: The ACM/EATCS platform for experimental research. In Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January
1999, Baltimore, Maryland, pages 913-914, 1999.

Bruce L. Golden and William R. Stewart. The Traveling Salesman Problem — A
Guided Tour of Combinatorial Optimization, chapter Empirical analysis of heuris-
tics, pages 207-249. John Wiley & Sons, 1985.

Harvey J. Greenberg. Computational testing: Why, how and how much. ORSA
Journal on Computing, 2(1):94-97, 1990.

Nicholas G. Hall and Marc E. Posner. Generating experimental data for com-
putational testing with machine scheduling applications. Operations Research,
49(7):854-865, 2001.

Susan Hert, Lutz Kettner, Tobias Polzin, and Guido Schéfer. ExpPLAB - a Tool
Set for Computational Experiments. http://explab.sourceforge.net, 2003.
Benjamin Hiller, Sven Oliver Krumke, and Jérg Rambau. Reoptimization gaps
versus model errors in online-dispatching of service units for ADAC. Discrete
Appl. Math., 154(13):1897-1907, 2006. Also available as ZIB-Report ZR 04-17.
Karla L. Hoffman and Richard H. F. Jackson. In pursuit of a methodology for
testing mathematical programming software. In John M. Mulvey, editor, Fval-
uating Mathematical Programming Techniques, Proceedings of a Conference held
at the National Bureau of Standards, Boulder, Colorado, January 5-6, 1981, vol-
ume 199 of Lecture Notes in Economics and Mathematical Systems, pages 177-199.
Springer, 1982.

Robert C. Holte. Very simple classification rules perform well on most commonly
used datasets. Machine Learning, 11:63-91, 1993.

John N. Hooker. Needed: An empirical science of algorithms. Operations Research,
42(2):201-212, 1994.

http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/
http://www.research.att.com/~dsj/chtsp/
http://www.itl.nist.gov/div898/handbook/eda/eda.htm
http://www.itl.nist.gov/div898/handbook/eda/eda.htm
http://explab.sourceforge.net

68

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

John N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics,
1(1):33-42, 1995.

Holger H. Hoos and Thomas Stiitzle. SATLIB: An online resource for research
on SAT. In Ian Gent, Hans van Maaren, and Toby Walsh, editors, SAT 2000,
Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers in
Artificial Intelligence and Applications, pages 283—-292. I0S Press, 2000.

Richard H. F. Jackson, Paul T. Boggs, Stephen G. Nash, and Susan Powell. Guide-
lines for reporting results of computational experiments. Report of the ad hoc
committee. Mathematical Programming, 49:413-425, 1991.

David Johnson and Lyle McGeoch. Experimental analysis of heuristics for the
STSP. In Gutin and Punnen, editors, The Traveling Salesman Problem and its
Variations, pages 369-443. Kluwer Academic Publishing, Dordrecht, 2002.

David S. Johnson. A theoretician’s guide to the experimental analysis of algo-
rithms. In M. H. Goldwasser, D. S. Johnson, and C. C. McGeoch, editors, Data
Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS
Implementation Challenges, volume 59 of DIMACS Monographs, pages 215250,
2002.

Darwin Klingman, H. Albert Napier, and Joel Stutz. NETGEN: A program for
generating large scale capacitated assignment, transportation, and minimum cost
flow network problems. Management Science, 20(5):814-821, 1974.

Donald E. Knuth. The Stanford Graphbase: A Platform for Combinatorial Com-
puting. ACM Press, 1993.

Balakrishnan Krishnamurthy. Constructing test cases for partitioning heuristics.
IEEE Transactions on Computers, 36(9):1112-1114, 1987.

Anthony LaMarca and Richard E. Ladner. The influence of caches on the perfor-
mance of sorting. In Proceedings of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, 5-7 January 1997, New Orleans, Louisiana, pages 370-379,
1997.

David Lane, Joan Lu, Camille Peres, and Emily Zitek. Online statistics: An in-
teractive multimedia course of study. http://onlinestatbook.com/index.html,
2006.

Pierre L’Ecuyer. Simulation of algorithms for performance analysis. INFORMS
Journal on Computing, 8(1):16-20, 1996.

Gideon Lidor. Construction of nonlinear programming test problems with known
solution characteristics. In John M. Mulvey, editor, Evaluating Mathematical Pro-
gramming Techniques, Proceedings of a Conference held at the National Bureau of
Standards, Boulder, Colorado, January 5-6, 1981, volume 199 of Lecture Notes in
Economics and Mathematical Systems, pages 35—43. Springer, 1982.

Catherine C. McGeoch. Analyzing algorithms by simulation: Variance reduction
techniques and simulation speedups. ACM Computing Surveys, 24(2):195-212,
1992.

Catherine C. McGeoch. Challenges in algorithm simulation. INFORMS Journal
on Computing, 8(1):27-28, 1996.

Catherine C. McGeoch. Toward an experimental method for algorithm simulation.
INFORMS Journal on Computing, 8(1):1-15, 1996.

Catherine C. McGeoch. Experimental analysis of algorithms. Notices of the AMS,
48(3):304-311, 2001.

Catherine C. McGeoch and Bernard M. E. Moret. How to present a paper on
experimental work with algorithms. SIGACT News, 30(4):85-90, 1999.

http://onlinestatbook.com/index.html

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

69

Bernard M. E. Moret. Towards a discipline of experimental algorithmics. In
Michael H. Goldwasser, David S. Johnson, and Catherine C. McGeoch, editors,
Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DI-
MACS Implementation Challenges, volume 59 of DIMACS Monographs, pages 197—
213. American Mathematical Society, 2002.

Bernard M. E. Moret and Henry D. Shapiro. Algorithms and experiments: The
new (and old) methodology. Journal of Universal Computer Science, 7(5):434-446,
2001.

Bernhard M.E. Moret and Henry D. Shapiro. An empirical assessment of algo-
rithms for constructing a minimal spanning tree. In Computational Support for
Discrete Mathematics, volume 15 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 99117, 1994.

Richard P. O’Neill. A comparison of real-world linear programs and their ran-
domly generated analogs. In John M. Mulvey, editor, Evaluating Mathematical
Programming Techniques, Proceedings of a Conference held at the National Bureau
of Standards, Boulder, Colorado, January 5-6, 1981, volume 199 of Lecture Notes
in Economics and Mathematical Systems, pages 44-59. Springer, 1982.

James B. Orlin. On experimental methods for algorithm simulation. INFORMS
Journal on Computing, 8(1):21-23, 1996.

Ronald L. Rardin and Benjamin W. Lin. Test problems for computational experi-
ments — Issues and techniques. In John M. Mulvey, editor, Fvaluating Mathematical
Programming Techniques, Proceedings of a Conference held at the National Bureau
of Standards, Boulder, Colorado, January 5-6, 1981, volume 199 of Lecture Notes
in Economics and Mathematical Systems, pages 8-15. Springer, 1982.

Gerhard Reinelt. TSPLIB—A traveling salesman problem library. ORSA Journal
on Computing, 3(4):376-384, 1991.

Neil Robertson and Paul D. Seymour. Graph minors. XIII: the disjoint paths
problem. J. Comb. Theory Ser. B, 63(1):65-110, 1995.

Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture.
J. Comb. Theory Ser. B, 92(2):325-357, 2004.

Laura A. Sanchis. On the complexity of test case generation for NP-hard problems.
Information Processing Letters, 36(3):135-140, 1990.

Peter Sanders. Presenting data from experiments in algorithmics. Number 2547
in Lecture Notes in Computer Science, pages 181-196. Springer, 2002.

David J. Sheskin. Handbook of Parametric and Nonparametric Statistical Proce-
dures. CRC Press, 2007.

Douglas R. Shier. On algorithm analysis. INFORMS Journal on Computing,
8(1):24-26, 1996.

Sidney Siegel. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill,
1956.

Peter Sprent and N. C. Smeeton. Applied nonparametric statistical methods. Chap-
man & Hall/CRC, 2001.

Geoff Sutcliffe and Christian B. Suttner. The TPTP problem library - CNF release
v1.2.1. Journal of Automated Reasoning, 21(2):177-203, 1998.

Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215-225, 1975.

Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
1983.

John W. Tukey. Ezploratory Data Analysis. Reading, MA. Addison-Wesley, 1977.

	Chapter 8. Experiments
	1.1 Introduction
	1.1.1 Example Scenarios
	1.1.2 The Importance of Experiments
	1.1.3 The Experimentation Process

	1.2 Planning Experiments
	1.2.1 Introduction
	1.2.2 Measures
	1.2.3 Factors and Sampling Points
	1.2.4 Advanced Techniques

	1.3 Test Data Generation
	1.3.1 Properties to Have in Mind
	1.3.2 Three Types of Test Instances
	1.3.3 What Instances to Use

	1.4 Test Data Libraries
	1.4.1 Properties of a Perfect Library
	1.4.2 The Creation of a Library
	1.4.3 Maintenance and Update of a Library
	1.4.4 Examples of Existing Libraries

	1.5 Setting-up and Running the Experiment
	1.5.1 Setup-Phase
	1.5.2 Running-Phase
	1.5.3 Supplementary Advice

	1.6 Evaluating Your Data
	1.6.1 Graphical Analysis
	1.6.2 Statistical Analysis
	1.6.3 Pitfalls for Data Analysis

	1.7 Reporting Your Results
	1.7.1 Principles for Reporting
	1.7.2 Presenting Data in Diagrams and Tables

