
it 2/20

On Divergence-based Author Obfuscation:
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Statistical Authorship Verification
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Abstract: Authorship verification is the task of determining whether two texts were
written by the same author based on a writing style analysis. Author obfuscation is the
adversarial task of preventing a successful verification by altering a text’s style so that it
does not resemble that of its original author anymore. This paper introduces new
algorithms for both tasks and reports on a comprehensive evaluation to ascertain the
merits of the state of the art in authorship verification to withstand obfuscation. After
introducing a new generalization of the well-known unmasking algorithm for short texts,
thus completing our collection of state-of-the-art algorithms for verification, we
introduce an approach that (1) models writing style difference as the Jensen-Shannon
distance between the character n-gram distributions of texts, and (2) manipulates an
author’s writing style in a sophisticated manner using heuristic search. For obfuscation,
we explore the huge space of textual variants in order to find a paraphrased version of
the to-be-obfuscated text that has a sufficiently high Jensen-Shannon distance at
minimal costs in terms of text quality loss. We analyze, quantify, and illustrate the
rationale of this approach, define paraphrasing operators, derive text length-invariant
thresholds for termination, and develop an effective obfuscation framework. Our
authorship obfuscation approach defeats the presented state-of-the-art verification
approaches, while keeping text changes at a minimum. As a final contribution, we
discuss and experimentally evaluate a reverse obfuscation attack against our obfuscation
approach as well as possible remedies.

ACM CCS: Applied computing → Document management and text processing; Applied
computing → Computer forensic
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1 Introduction

Can the authorial style of a text be consistently ma-
nipulated? More than a century worth of research on
stylometry and authorship analysis could not produce a
definitive answer to this question or a reliable approach
to do so manually. In the context of computational
authorship obfuscation, a handful of approaches have
achieved some limited success but are still rather insuf-
ficient. Rule-based approaches are neither flexible, nor
is stylometry understood well enough to compile rule
sets that specifically target author style. For lack of a
higher-level understanding and a generalizable frame-
work for reliable deduction of an author’s style from a
given text, the state of the art in authorship verification
has largely focused on the use of statistical methods for

measuring the similarity of a text with other samples
provided by the same or different authors. While simple
in nature, the best approaches in the literature have
turned out to be surprisingly robust and rather difficult
to fool. The simplest text obfuscation attempts tend to
result in sub-par text quality with often negligible ef-
fect, and even the more complex systems struggle with
the same and other issues. For example, monolingual
machine translation-based approaches suffer from a lack
of training data, whereas applying multilingual trans-
lation in a cyclic manner as a workaround has proved
to be ineffective. In addition, none of the existing ap-
proaches offers a means to control the result quality.
Given recent advances in controlled text generation, it
stands to reason that a lot more can be achieved.
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In this paper, we introduce authorship verification by
example of our own generalized adaptation of the un-
masking algorithm developed by Koppel and Schler [33],
and propose a novel obfuscation method that is able to
successfully fool this and other state-of-the-art verifica-
tion algorithms. In order to do so, we depart from the
mentioned obfuscation paradigms and, for the first time,
cast author obfuscation as a heuristic search problem.
Given a to-be-obfuscated text, we search for a cost-
minimum sequence of tailored paraphrasing operations
that achieve a significant increase of the text’s style
distance to other texts from the same author under
a generic statistical writing style representation; costs
accrue through operations in terms of their estimated
text quality reduction. By designing a hybrid search
strategy, we obtain a significant reduction of the expo-
nentially growing search space that is induced by the
paraphrasing operators, enabling the use of informed
search algorithms for authorship obfuscation.
Our key contributions are (1) a generalization of un-
masking to short texts (Section 3), (2) a theory of style
distance and length-dependent obfuscation, which is
based on the Kullback-Leibler divergence (Section 4),
and (3) an operationalization of this theory using heuris-
tic search, which enables us to balance obfuscation gain
and text quality loss (Section 5). In an extensive compar-
ative evaluation, we benchmark the effectiveness of our
obfuscation system against unmasking as well as a large
number of other state-of-the-art authorship verification
systems (Section 6). Finally, we investigate the vulner-
ability of our obfuscation approach to de-obfuscation
attacks, where we attempt to undo an obfuscation by
reversing the obfuscation procedure (Section 7). Parts
of this work have been published before at other venues
[3, 4] and are provided as an overview in the context of
this special issue, whereas the inquiry into obfuscation
safety or vulnerability is a novel contribution.

2 Related Work

Authorship analysis dates back over 120 years [9] and
has mostly dealt with authorship attribution (given
a text of unknown authorship and texts from known
candidate authors, attribute the unknown text to its
true author among the candidates). More recently, the
task of authorship verification attracted a lot of interest
(given a text of unknown authorship and a set of texts
from one known author, verify whether the unknown
text is written by that author) since it lies at the heart
of many authorship-related problems.
Systematic reviews on authorship analysis have been
contributed by Juola [23] and Stamatatos [46] and the
effectiveness of character 3-grams today is “folklore
knowledge,” albeit not systematically proven. Still, a
complete list of stylometric features has not been com-
piled to date. Abbasi and Chen [1] proposed writeprints,
a set of over twenty lexical, syntactic, and structural

text feature types, which has gained some notoriety
within attribution, verification, but also for “anonymiz-
ing” texts [59, 37, 22, 35].

Instead of relying on a rich feature set, Zhao et al.
[58], Zhao and Zobel [57] only extract POS tag and
function word distributions and interpret style differ-
ences as measurable by the Kullback-Leibler divergence.
The Kullback-Leibler divergence further appeared in
an overview of style distance measures by Kocher and
Savoy [32], yet in the context of authorship profiling,
rather than verification. Teahan and Harper [54] and
Khmelev and Teahan [28] use compression as an indi-
rect means to measure stylistic difference; later adapted
and improved by Halvani et al. [19]. Koppel and Schler
[33] developed the unmasking approach. The basic idea
behind this approach is that texts written by the same
author only differ in few superficial features. By suc-
cessively removing those superficial features, differen-
tiability between texts by the same author is expected
to degrade faster than for texts written by different
authors. Unmasking has proved very successful par-
ticularly on longer texts [51, 27], although Sanderson
and Guenter [44] demonstrated its particularly weak
performance if the texts undercut a minimum length of
about 5,000 words, which we will address as part of our
core contributions. Authorship verification gained new
traction from a series of dedicated shared tasks at PAN
[24, 47, 49], which gave way to many new verification
approaches—often specifically tailored towards short
texts—establishing a stable baseline for the state of
the art [15, 29, 2, 12]. Many new publications in the
field have since appeared including both traditional
statistical methods as well as deep transfer-learning ap-
proaches. However, none have managed to significantly
push the boundaries of the state of the art on the task of
short-text authorship verification, thus constituting an
array of comparably competitive verification algorithms
[32, 31, 7, 8, 20, 39]. The datasets used for the PAN
shared tasks were later shown to incorporate a num-
ber of sampling-induced biases [5], warranting a closer
re-examination of existing verification approaches.

Among the first to tackle authorship obfuscation were
Rao and Rohatgi [42], who used cyclic machine trans-
lation where texts were automatically translated into
various languages and then back to English. Following
the publication of Koppel and Schler’s unmasking algo-
rithm, Kacmarcik and Gamon [26] developed a method
that directly attacks unmasking. By iteratively remov-
ing the most discriminatory text features, the classi-
fication performance of an unmasking verifier could
be degraded—at the cost of rather unreadable texts.
Obfuscators targeting write-prints-based verifiers were
later presented by Juola and Vescovi [25] and McDon-
ald et al. [35]. Brennan et al. [10] found that machine
translation for obfuscation is ineffective and due to its
blackbox character also rather uncontrollable. Thus,
instead of performing round-trip translation across mul-

2



tiple languages, Xu et al. [56] proposed within-language
machine translation to translate directly between styles.
The practicality of this approach, however, is dimin-
ished by the general lack of large-scale parallel training
data, a limitation of neural approaches that still holds
true today inhibiting the practicality of models like the
ones proposed by Emmery et al. [13] or Bo et al. [6].
From 2016 to 2018, a shared task series on authorship
obfuscation was organized at PAN [43, 18, 41]. Some of
the seven participating teams suggested rather conser-
vative rule-based approaches that did not change a text
sufficiently to obfuscate authorship against most state-
of-the-art verifiers. Other obfuscators “fooled” some of
these verifiers, but yet again were generating rather
unreadable texts. To score high in terms of text quality
and obfuscation performance, the shared task organiz-
ers asked for approaches that more carefully paraphrase
a text (i.e., the meaning should stay the same and the
text should still be readable). Only recently, Mahmood
et al. [34] presented Mutant-X, an obfuscator based on
genetic algorithms that tries to tackle these problems
while requiring less data than neural approaches. So
far, this system has only been tested in a closed-set sce-
nario with up to 10 authors and has not been compared
against recent state-of-the-art authorship verifiers, but
merits closer inspection in future work.
Our new obfuscation approach presented in this paper is
inspired by Stein et al.’s [53] heuristic paraphrasing idea
for “encoding” an acrostic in a text and by Kacmarcik
and Gamon’s observation that changing rather few text
passages may successfully obfuscate authorship.

2.1 Unmasking for Authorship Verification

Unmasking as per Koppel and Schler is based on the
idea that the style of texts from the same author differs
only in a few superficial features. By iteratively remov-
ing these most discriminating style features, one can
measure the “speed” at which cross-validation accuracy
between sets of chunks of the two texts degrades. For
texts written by the same author, the accuracy tends to
decrease faster than otherwise. Combining the obtained
accuracy values into curves for each pair, a meta classi-
fier can be trained on the curves to determine the class
of a pair (same / different author). Koppel and Schler
evaluated their approach on a corpus of 21 books (each
at least 500 kB) by 10 different authors. The task was
to verify for each book A whether it has been written
by a given author, using all the latter’s books B for an
author profile, except book A, in case it was the same
author. As described in their paper, the unmasking
algorithm works as follows (Figure 1):
1. From either text, create non-overlapping chunks of at

least 500 words length without splitting paragraphs.
2. Use the 250 words with highest average frequency in

A and B as features.

3. Obtain 10-fold cross-validation accuracy between A
and B with a linear SVM kernel.

4. Eliminate the 3 highest positive and negative features
for the model trained in each fold.

5. Go to Step 3 if there are features left.
The declining cross-validation accuracy values from
curves on which a meta classifier is trained. Koppel and
Schler used another SVM as the meta classifier, utilizing
as features the curve points, the curves’ point-wise first-
and second-order derivatives, and the derivatives sorted
by steepest point-wise drop. With this approach, they
achieved a verification accuracy of over 95%.

3 Unmasking Generalized to Short Texts

Unmasking as a strong state-of-the-art verification ap-
proach lends itself to serving as a good benchmark for
our further inquiries into authorship obfuscation. Unfor-
tunately, the performance of unmasking hinges on the
availability of sufficiently many chunks per text, where
each chunk has to be of at least the aforementioned
500 words length, or else the training data becomes
too sparse and no descriptive curves can be generated.
Short texts have the inherent problem that not many
chunks can be extracted by cutting them into pieces.
To generate more training samples from short texts,
one method would be to generate overlapping chunks,
but this only ends in many almost identical chunks and
provides only a marginal performance boost. Instead, as
a first contribution, we exploit the bag-of-words nature
of the unmasking features and create the chunks by
oversampling words in a bootstrap-aggregating manner.
We treat each text as a random pool of words from
which we can draw without replacement to fill up a
chunk. Once the pool is exhausted, we replenish it and
draw again until we have generated a sufficient number
of chunks. With this method, we essentially draw with
replacement, but can guarantee that each word is drawn
at least once.
Employing this bagging approach alone will not yield
satisfying results, however. The curves will be quite
random with high variance. To counteract this, we run
unmasking on the generated chunks multiple times and
average the curves to get smoother and more repro-
ducible results. Our generalized unmasking algorithm
works as follows (for brevity, we leave a hyperparameter
discussion to Bevendorff et al. [4]):
1. From either text, create 30 chunks consisting of

700 words each by random chunk generation.
2. Use the 250 words with highest average frequency in

A and B as features.
3. Obtain 10-fold cross-validation accuracy between A

and B with a linear SVM kernel.
4. Eliminate the on average 5 most significant positive

and negative features across folds (resulting in a total
of 10 removals).

5. Go to Step 3 if there are still features left.
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Figure 1: Schematic of the unmasking algorithm. Steps 1-4 are described in the text below. Dependent on whether the authors of
texts A and B are the same or different, accuracy curves as exemplified can be expected.

Approach Precision Recall F0.5u c@1
Generalized Unmasking 0.82 0.54 0.74 0.76
Bagnall 0.81 0.71 0.77 0.79
Halvani et al. (CLM) 0.78 0.78 0.78 0.78
Halvani et al. (CBC) 0.71 0.71 0.71 0.70

Table 1: Comparison of generalized unmasking (c = 0.1) with
the state of the art in short-text authorship verification. F0.5u
is the F0.5 measure with unknown as false negatives [4], c@1
is the non-answer-augmented accuracy as used for PAN [50].
Differences between the first three verifiers are non-significant.

Another linear SVM classifier is trained on these train-
ing curves, their central-difference gradients (first- and
second-order), as well as their gradients sorted by mag-
nitude. This meta classifier is then used to classify the
curves that were generated in the same fashion from
text pairs from the test set. As a means to add more
control to the reliability of verification results obtained
by unmasking, we further add a confidence hyperpa-
rameter c, which is the minimum distance to the meta
classification hyperplane a generated unmasking curve
must have in order to be classified. Any curve closer
than this threshold is rejected as unknown. We verified
the effectiveness of this new generalized unmasking ap-
proach by comparing its performance on the new Webis
Authorship Verification Corpus 2019 [4, 5] of 262 author-
ship verification cases against the winning approach of
the PAN 2015 Author Identification task by Bagnall [2]
as well as a more recent compression-based approach by
Halvani et al. [19]. The approach by Halvani et al. was
tested with two of their proposed distance measures
CLM and CBC. We found no significant differences be-
tween any of the three verification algorithms (with the
exception of CBC performing worse overall), indicating
a successful adaptation of Koppel and Schler’s unmask-
ing to short texts with state-of-the-art performance.
Results are shown in Table 1.

4 Style Distance and Adaptive Obfuscation

Obfuscation and verification of authorship are two sides
of the same coin. Consequently, effective obfuscation
technology has to be developed from the verification

perspective: Given texts from the same author, one
of which is not publicly known to be written by that
author, the goal is to paraphrase that text so that
verification attempts against texts of known authorship
will fail. The term “paraphrase” expresses that we aim
at preserving the meaning of a text while maximizing
its style distance regarding reference texts.
From theoretical and practical analyses it is known that
current authorship verification algorithms analyze (be it
implicitly or explicitly) the distributions of the charac-
ter trigrams. We can state this without loss of generality,
since character trigrams as the lowest-level feature that
still captures word boundaries and morphology, directly
influence higher-level features such as word n-grams
or parts of speech. Although we only consider English
in our research, this holds for at least most European
languages. We exploit this fact by breaking the style
comparison between two texts down to a single number,
namely, the Kullback-Leibler divergence (KLD) of the
respective character trigram frequency distributions.
This effective character-based style distance measure
has not been employed directly in this form for verifi-
cation as of now although its mathematical properties
are highly beneficial from a verification and obfusca-
tion perspective: (1) The KLD acts as a feature- and
task-agnostic information-theoretic divergence measure
that directly or indirectly represents the core decision
criterion not only for cross-entropy-based classifiers.
(2) The KLD can be used as a simple and computa-
tionally feasible stopping criterion for an obfuscation
process. (3) Based on the KLD, a normalization crite-
rion for obfuscating texts of different lengths can be
derived. (4) The KLD derivative can serve as a selection
criterion for parts of the text that will yield the highest
obfuscation gains if changed, immediately suggesting a
greedy obfuscation algorithm.

4.1 Measuring Stylistic Distance

By utilizing character trigram frequencies to represent
texts, one encodes various aspects of authorial style
at the same time including vocabulary, morphology,
and punctuation. Based on this representation, the
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Figure 2: JS∆ on the Webis Authorship Verification Corpus
2019 over text length. Each line corresponds to a text pair.
The straight lines indicate the 0th and the 50th percentiles of
distances within the true different-authors cases.

Kullback-Leibler divergence is defined as follows:

KLD(P‖Q) =
∑

i

P [i] log P [i]
Q[i] , (1)

where P and Q are discrete probability distributions
corresponding to the relative frequencies of character
trigrams in the to-be-obfuscated text and the known
texts respectively. For true probability distributions,
the KLD is always non-negative.
The KLD has shortcomings. First, it is asymmetric,
so it is not entirely clear which character distribution
should be P and which should be Q when comparing
texts. Secondly, the KLD is defined only for distribu-
tions P and Q where Q[i] = 0 implies P [i] = 0. Con-
versely, P [i] = 0 yields a zero summand. Since we want
to avoid reducing or skewing the measure further by
“subsetting” or smoothing the trigrams, we resort to the
Jensen-Shannon distance JS∆ [14] in lieu of the KLD.
The JS∆ is a metric based on the symmetric Jensen-
Shannon divergence (JSD) that is defined as

JSD(P‖Q) = KLD(P‖M) + KLD(Q‖M)
2 , (2)

with

M = P + Q

2 . (3)

Introducing the artificial distribution M circumvents
the KLD’s problem of samples of one distribution be-
ing unknown in the other. Since M [i] can never be 0
for any i with P [i] + Q[i] > 0, all summands of ei-
ther KLD(P‖M) or KLD(Q‖M) must also be non-zero.
Using the base-2 logarithm in the KLD, the JSD is [0, 1]-
bounded. The JS∆ metric is derived as

JS∆(P, Q) =
√

2 · JSD(P‖Q) . (4)

Threshold Obfuscation level Slope Intercept
< ε0 No Obfuscation n / a n / a
≥ ε0 Moderate Obfuscation – 0.099 1.936
≥ ε0.5 Strong Obfuscation – 0.103 2.056
≥ ε0.7 Stronger Obfuscation – 0.104 2.083
> ε0.99 Over-obfuscation – 0.107 2.168

Table 2: Obfuscation levels and their log-scale polynomial fit
coefficients on our training corpus.

4.2 Length-dependent Obfuscation

Employing a fixed JS∆ threshold as the obfuscation tar-
get is a bad idea: it leads to over- or under-obfuscation
for text pairs that have an a-priori high or low style
distance. We also noted that JS∆ is inversely correlated
with text length: pairs of long texts are less distant to
one another than pairs of short texts, since the shorter
a text the sparser and noisier is its trigram distribution.
This even holds if the texts are written by the same
author. Figure 2 plots the JS∆ over text length in our
training data, revealing an approximately logarithmic
relationship. The most interesting observation is the
almost length-invariant spread of the resulting curves.
Moreover, depending on their class, the curves converge
towards the upper or lower bounds of this spread with
growing length, thus becoming visibly separated.
Assuming that the observed JS∆-to-length relationship
generalizes to other text pairs of similar length—a hy-
pothesis which merits further investigation in future
work—, we measure style distance in JS∆@L (Jensen-
Shannon distance at length) and fit threshold lines to
define obfuscation levels. Table 2 details the obfuscation
levels εk corresponding to a linear least-squares fit on
the logarithmic scale through a given level’s k-th per-
centile of the distribution of JS∆ in the different-authors
class; the 0th percentile ε0 and the 50th percentile ε0.5
are displayed in Figure 2. The ε0 threshold serves as
an obfuscation baseline, indicating a same-author case
as unobfuscated, if the JS∆ between its documents is
below this threshold. Otherwise, we call the obfusca-
tion moderate, strong, stronger, and over-obfuscated,
depending on the threshold the JS∆ exceeds. We per-
form our further experiments with the ε0.7 threshold,
unless stated otherwise.
Regarding the line fit coefficients given in Table 2, the
gradients of higher ε thresholds are slightly steeper,
providing further evidence of the convergence rate of
same-author cases. The ε0 threshold line will cross the
x axis for text lengths of x ≈ 219.5 characters. Since
negative distances are not sensible, such book-sized
texts may be split into smaller chunks, which then can
be obfuscated individually. Note that we were able to
reproduce these threshold observations on the PAN 2014
novels corpus [48], albeit obtaining slightly different
coefficients. In practice, we recommend training the
coefficients on an appropriate corpus matching genre
and register of the to-be-obfuscated texts.
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4.3 Ranking Trigrams for Obfuscation

Key idea to yield a strong obfuscation is to iteratively
change the frequency of those trigrams of the to-be-
obfuscated text for which the positive impact on JS∆ is
maximal. In each iteration we hence rank the trigrams
by their influence on JS∆ via their partial KLD deriva-
tive, assuming that probability distribution Q repre-
sents the text that is to be obfuscated:

∂

∂ Q[i]

(
P [i] log2

P [i]
Q[i]

)
= − P [i]

Q[i] ln 2 . (5)

Omitting constants, we get the rank-equivalent

RKL(i) = P [i]
Q[i] . (6)

RKL gets larger with smaller Q[i]. I.e., a single obfus-
cation step boils down to removing one occurrence of
the most influential trigram from the to-be-obfuscated
text. This can be done naively by simply “cutting it
out”, or, more sensibly, via a targeted paraphrasing
operation replacing a text passage with the trigram by
another semantically equivalent text passage without
the trigram. Then, the trigrams are re-ranked and the
procedure is repeated until the JS∆ exceeds the desired
obfuscation threshold. We call this strategy obfuscation
by reduction. Reversing the roles of P and Q yields an
addition strategy, which we leave for future work.
Though the described greedy obfuscation effectively
hinders verification, the naive cut-it-out approach re-
sults in rather unreadable texts and may even be easily
“reverse engineered” by an informed verifier. Even with
more sophisticated paraphrasing operations, a reverse-
engineering attack against the greedy strategy seems
plausible. We will address both shortcomings by an in-
formed search, which is introduced in the next section.

5 Obfuscation via Informed Search

An author of a to-be-obfuscated text does obviously
not wish their text to be “foozled” due to obfuscation
(e.g., by naively cutting out trigrams). The text has
to convey the same message as before and, ideally, it
should look “inconspicuous” to an extent that readers
do not suspect tampering [40]. However, automatic
paraphrasing is still in its infancy: Beyond synonym
substitution, paraphrasing operators targeting single
words have only rarely been devised so far [16, 17, 55].
Still, the paraphrasing operators we are looking for do
not have to alter a text substantially, which enables us
to better estimate an operator’s negative impact on text
quality. Furthermore, similar to the presented greedy
obfuscation, we can stop modifying a text when the
desired obfuscation threshold is reached, which renders
our approach “minimally invasive.” The optimization
goals can be summarized as follows:

1. Maximize the obfuscation as per the JS∆ beyond a
given εk without “over-obfuscating.”

2. Minimize the accumulated text quality loss from
consecutive paraphrasing operations.

3. Minimize the number of text operations.
We describe the problem as a potentially infinite space
of possible (text) states, in which each state is reachable
from one or multiple nodes in a graph spanned over the
entire space by operators with accruing costs that tran-
sition from one state to another. At each node it is to
be decided in which order to explore successor states so
as to find a minimum-cost path from the starting node
to a node that satisfies a pre-determined goal condition
(i.e., sufficient obfuscation). Informed heuristic search
is our choice to tackle this hard optimization problem.
We will analyze also the admissibility property in order
(1) to understand (in terms of modeling) the nature
of the problem, and (2) to be able to compute an op-
timum solution if time and space constraints permit.
However, due to the exponential size of the induced
state space (text versions as nodes, paraphrasing op-
erators as edges), one may give up admissibility while
staying within acceptable error bounds. In the follow-
ing, we will derive an admissible obfuscation heuristic
and suggest a small, viable set of basic paraphrasing
operators as an initial proof of concept.

5.1 An Admissible Obfuscation Heuristic

Let h(n) denote a heuristic estimating the optimal
cost for reaching a desired obfuscation threshold from
node n, and let g(n) denote the path costs to n starting
at the original text node s.
Applying a paraphrasing operator has a highly non-
linear effect on text quality (some changes are incon-
spicuous, others are not) and may also restrict the set
of applicable operators (in the same text). For instance,
applying the same operator a third time in a row may
entail higher (quality) costs compared to applying it for
the first time. This means that different paths from s
to n can come with different estimations for the rest
cost h(n)—in a nutshell, the parent discarding prop-
erty may not hold [38]. A similar effect, but rooted in a
different cause, results from the observation that some
authors’ texts are easier to obfuscate than others. We
can address both issues and reinstall the conditions for
parent discarding and admissible search by updating
the operator costs for future application beyond node n,
such that g(n) turns into “normalized path costs.”
Based on both the desired obfuscation threshold ε and
the JS distance JS∆n of the text at node n to the
other text(s) from the same author, we define the prior
heuristic as

hprior(n) = ε− JS∆n. (7)

The normalized path costs gnorm are defined as the

6



cost-to-gain ratio of the accumulated path costs g(n)
to total JS∆ change from start node s:

gnorm(n) = g(n)
JS∆n − JS∆s

. (8)

Finally, the heuristic h(n) is defined as the product
of hprior(n) and gnorm(n):

h(n) = (ε− JS∆n) · g(n)
JS∆n − JS∆s

. (9)

The prior heuristic guarantees convergence towards zero
as we approach a goal node that exceeds the obfuscation
threshold ε, while the normalized path costs determine
the slope of the heuristic.

Consistency and Admissibility. A heuristic h(n) is
admissible if it does not exceed h∗(n), the true cost of
reaching an optimum goal via state n, for all n in the
search space. Monotonicity h(n) ≤ c(n, n′) + h(n′) is a
sufficient condition for admissibility yet easier to show.
Rewriting it as

−h(n′) + h(n) ≤ g(n′)− g(n),

and inserting in the heuristic Equation 9 yields

− (ε−JS∆n′ ) · g(n′)
JS∆n′ − JS∆s

+ (ε−JS∆n) · g(n)
JS∆n − JS∆s

≤ g(n′) − g(n) .

Defining ḡ(n) = JS∆n − JS∆s as change function and
inserting previous definitions we get

−hprior(n′) · g(n′)
ḡ(n′) − −hprior(n) · g(n)

ḡ(n) ≤ g(n′) − g(n) .

We know hprior(n) to be monotonically decreasing, in-
verse to ḡ(n), and converging towards zero as we ap-
proach a goal. If the cost and change functions g(n)
and ḡ(n) are equivalent up to scale, they cancel each
other out (up to scale), the slope of their quotient be-
comes zero, and the inequality turns into equality. Oth-
erwise, if g(n) dominates ḡ(n), the inequality still holds.
Though, if ḡ(n) dominates g(n), the sign of the quo-
tient’s gradient flips (as can be proved by the quotient
rule), breaking the inequality and violating consistency.
But since JS∆ is bounded by

√
2 globally, the change

function ḡ(n) cannot be superlinear.
Limitations of our argument: (1) occasionally ḡ(n) can
locally dominate g(n), and (2) both functions are pre-
sumed differentiable at n. In practice, the latter may
hardly ever be true as texts are noisy, text opera-
tion side effects are unpredictable, and, the cumulative
change function is not guaranteed to be monotonic.
Still, step costs c(n, n′) will never be negative, which
makes g(n) monotonic but not necessarily differentiable.
Thus, the heuristic function will not be fully consistent
and may even overestimate.

Operator name Cost value
(1) n-gram removal 40
(2) Character flips 30

Context-free synonyms 10
Context-free hypernyms 6
Context-dependent replacement 4
Character maps 3
Context-dependent deletion 2

Table 3: Implemented text operators and their assigned step
costs in our heuristic obfuscation prototype.

In a practical scenario we can directly control the cost
but not the change function, so we will have to deal with
problems of overestimation and local optima. Generally,
the first few steps of a search path are the most prob-
lematic since with little prior information the heuristic
has to extrapolate based on very few data points, but
is still expected to accurately estimate the remaining
costs. Hence, an early heuristic is particularly suscepti-
ble to noise and can only give a coarse estimate. With
more cumulative cost and change information available,
the heuristic will stabilize towards the mean cost-gain
proportion and eventually converge. This stabilization
occurs quickly. In real application scenarios, we keep
overestimation at a minimum or even avoid it at all and
therefore obtain an approximately admissible heuristic
due to the JS∆’s boundedness.

5.2 Search Space Challenges

Given a longer text (one page or more), the number of
potential operator applications is high. The most direct
way to expand a node is to generate a successor with
each applicable operator for each occurrence of each
selected n-gram, but this will inevitably result in an
immense number of very similar states with identical
costs and almost identical JS∆ change. I.e., the main
challenge is to find a sensible middle ground between
accepting a non-optimal solution too quickly or not
finding a solution at all. Recall that one can easily
turn the A* search into a depth-first or breadth-first
search by making successor generation too cheap or
too costly: depth-first search will always find a (non-
optimal) solution after a sufficient number of operations,
while breadth-first will never terminate before running
out of memory.
We can accept a near-optimal solution, so selecting one
or two occurrences of an n-gram (instead of all) will be
sufficient. A potential problem is that the applicability
of a high-quality operator is often restricted. However,
one can increase the application probability by selecting
not only the top-ranked n-gram but a small number
of different near-top n-grams. This way, we have mul-
tiple high-impact n-grams with different contexts to
work with, and we increase the chances of applying
the operator opening alternative paths for the search.
In practice, JS∆ change is not a monotonic function
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Efficiency Cases Median
Subset # Greedy A* Gain

Total operations
all 41 148 145 −2 %

1+ ops 28 241 202 −16 %
100+ ops 21 291 236 −19 %

Path costs
all 41 5,960 1,968 −67 %

1+ ops 28 9,680 2,712 −72 %
100+ ops 21 11,680 2,935 −75 %

Table 4: Efficiency of greedy obfuscation vs heuristic obfusca-
tion for an obfuscation threshold of ε0.5.

and steepest-ascent hill climbing does not guarantee
an overall lowest-cost path. Thus, we applied each op-
erator to two occurrences of the top ten n-grams and
selected from these (up to 140 successors) six randomly
for expansion. However, even with only six successors
we still generate millions of nodes very quickly and
will eventually run out of memory without finding a
solution. Fortunately, we can assume that exploring
more neighbors will not produce much better results
after a while, so we can restart the search from a few
promising lowest-cost nodes and discard others.

5.3 Paraphrasing Operators

Our prototype employs the seven basic text operators
shown in Table 3 with costs assigned by us according to
our appraisal of their negative impact on text quality.
These are to be understood as a pilot study, more state-
of-the-art text generation operators can be added easily.
The most versatile yet most disruptive basic modifica-
tion are (1) the removal of an n-gram, and (2) flipping
two of its (or adjacent) characters. Such operations
only are a last resort, and we hence set their costs
much higher than those of other operators. As steps
towards real paraphrasing, we also perform context-free
synonym and hypernym replacement based on Word-
Net [36] as well as context-dependent replacements and
deletions using the word 5-gram model of Netspeak
[52]. Lastly, we created a map of similar punctuation
characters for inconspicuous character swaps.

6 Evaluation

To evaluate our approach, we report on: (1) an efficiency
comparison of greedy versus heuristic obfuscation,
(2) an effectiveness analysis against well-known author-
ship verification approaches (unmasking, compression-
based models, and PAN participants), as well as (3) a
review and discussion of an example obfuscated text.
Our experiments are based on PAN authorship corpora
and the Webis Authorship Verification Corpus 2019,
half of them same-author cases, the other half different-
authors cases (each a pair of texts of about 23,000 char-
acters / 4,000 words). Instead of the more particular
genres studied at PAN, our new corpus contains longer

Confidence Unobfuscated Obfuscated
Hyperplane Classified Effectiveness Classified Effectiveness
threshold cases [%] Prec. Rec. cases [%] Prec. Rec.

0.8 11.3 1.00 0.17 2.5 1.00 0.02
0.7 15.0 1.00 0.24 6.2 1.00 0.05
0.6 18.8 1.00 0.24 11.3 0.75 0.07
0.5 26.3 1.00 0.29 24.0 0.86 0.15
0.0 100.0 0.74 0.63 100.0 0.71 0.42

Table 5: Unmasking performance on our test data at various
confidence thresholds before and after obfuscation. Recall treats
unclassified cases as false negatives.

texts and more modern literature from Project Guten-
berg. We also took extra care to cleanse the plain text,
unified special characters, and removed artifacts; in
particular, we ensured that no author appears in more
than one case. The training-test split is 70-30 so as to
have a decent training portion. The corpus is released
alongside the code of our framework and other data.

6.1 Search Over Greedy Obfuscation

Table 4 contrasts the efficiency of the greedy obfuscation
with that of our heuristic search approach, measured
in terms of medians of total text operations and path
costs. Heuristic search achieves a decrease of operations
of up to 19% for texts that need at least 100 operations
and an accumulated path cost decrease of up to 75%.
Since the greedy obfuscation approach cannot choose
among different operators, it must rely on the most
effective one to achieve the obfuscation goal, incurring
significant path costs. Given that both obfuscators em-
ploy adaptive thresholds, there are cases which do not
require any (or only little) obfuscation, whereas oth-
ers need more than 100. The latter are of particular
interest, since it is here where heuristic obfuscation
outperforms greedy obfuscation the most.

6.2 Obfuscation Against Unmasking

As our first and primary evaluation, we test the heuristic
obfuscation approach against the generalized unmask-
ing approach presented in Section 3. Due to the way
unmasking successively degrades the text representa-
tions in-depth, fooling unmasking verification provides
us with evidence that our obfuscation technique works
at a deeper level than just the few most superficial text
features. Another very neat property of unmasking is
that it produces visual curve representations of the pro-
cess, which render the effects of obfuscation accessible
to human inspection and interpretation and therefore
make unmasking a very suitable benchmark.
As described previously, we use the chunk frequencies
of the 250 most common words as features, determine
classification accuracy by 10-fold cross validation using
an SVM classifier, and remove ten features per iteration.
Table 5 contrasts the performance of unmasking be-
fore and after obfuscation. With increasing confidence
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Figure 3: CBC values of 20 PPMD-compressed same-author
pairs before and after obfuscation up to the obfuscation thresh-
old ε0.7. The classification threshold by which same-author
and different-authors cases could be distinguished is high-
lighted in the top portion.

thresholds, between 19% down to 11% of the cases are
decidable before obfuscation, decreased by a factor of 2
to 4 after obfuscation. On average, 205 trigrams were
obfuscated; as little as about 3% of a text.

6.3 Obfuscation Against Compression Models

Another verification approach that differs from tradi-
tional feature-engineering are compression-based mod-
els. We use the approach by Halvani et al. [19], who
recommend the compression-based cosine (CBC) by
Sculley and Brodley [45] calculated on the text pairs
after compression with the PPMD algorithm [21].
Figure 3 shows CBC values on a random selection of
20 exemplary same-author cases from our test dataset
before and after obfuscation with the decision thresh-
old highlighted. Quite impressively, almost none of the
cases are classified correctly anymore after obfusca-
tion. Overall, the accuracy drops from originally 78%
to 60% in the case of CLM and in the case of CBC,
respectively, from 71% to 55%, which is equivalent to
random guessing. This strong effect can be explained
as follows: Sculley and Brodley describe their metrics
in terms of the Kolmogorov complexity, but the reason
why natural language allows for very good compression
ratios is its predictability (printed English has an en-
tropy of at most 1.75 bits per character [11]). PPMD
uses finite-order Markov language models for compres-
sion, which are effective at predicting characters in a
sentence, but sensitive to the increased entropy that
stems as an immediate result from our obfuscation.

6.4 PAN Obfuscation Evaluation

We further conducted an extensive evaluation of our
obfuscation scheme against the top submissions to the
verification task at PAN 2013–2015 [24, 48, 50]. The
results are shown in Table 7. On all verifiers tested, we
achieve an average AUC and C@1 reduction of around
10 and 6 percentage points on three of the corpora.
With only minimal text modifications, this puts us in

Obfuscator PAN13 PAN14 E PAN14 N PAN15
∆ AUC / C@1

our approach 0.10 0.06 0.09 0.05 0.03 0.02 0.11 0.06
mihaylova 0.11 0.08 0.13 0.11 0.16 0.11 0.11 0.09
castro 0.11 0.05 0.13 0.11 0.13 0.08 0.09 0.06
keswani 0.09 0.07 0.11 0.09 0.10 0.07 0.06 0.05
bakhteev 0.05 0.05 0.05 0.05 0.07 0.05 0.06 0.06
mansoorizadeh 0.04 0.03 0.05 0.05 0.06 0.04 0.04 0.03

Table 6: Obfuscation performance comparison for C@1 and
ROC-AUC against PAN participants.

second place on the PAN13 and PAN15 corpora, and
fourth on PAN14 Essays compared to other obfuscators
submitted to PAN [18] (Table 6). The PAN14 Novels
corpus turns out to be the most challenging for our
approach and there are multiple reasons for that. First,
the texts are significantly longer. This makes it difficult
to assess the overall obfuscation with a global measure
like JS∆. As a result, only few sentences were actually
obfuscated with most of the text left untouched. Inso-
far, we were surprised to see any significant effect at all
(best individual result: 13 percentage points). To make
matters worse, the flat search landscape spanned by
our obfuscation operators leads to an increasing num-
ber of reopened states on these longer texts, greatly
reducing the efficiency of the heuristic search. This re-
veals an important detail to explore in future work:
obfuscation operations need to be distributed across
the whole text and progress needs to be measured on
smaller parts of it to ensure uniform obfuscation of
everything and avoid obfuscation “hot spots”. Secondly,
the number of “known” texts varies substantially, which
demands more research into how we can calculate a
minimal yet sufficient JS∆@L stopping criterion if a
larger amount of known material is available. Thirdly,
the corpus consists primarily of works by H. P. Love-
craft paired with fan fiction, which incurs unforeseeable
global corpus features that verifiers can exploit, but
which we do not consider for obfuscation. Lastly, we
identify kocher15 [30] as the most difficult verifier for us
to obfuscate. Employing an impostor approach on the
most frequent words, it was not the best-performing ver-
ifier in the first place, but proves most resilient against
our “reductive” obfuscation, which tends to obfuscate
only n-grams that are already rare for maximum effect.
We expect that augmenting a reduction obfuscation
with the previously-mentioned extension strategy will
yield better results and an overall safer obfuscation.

6.5 Example of an Obfuscated Text

Assessing the text quality in tasks that involve gener-
ation, such as translation, paraphrasing, and summa-
rization, is still mostly manual work. Frequently used
measures like ROUGE cannot be applied in the context
of obfuscation, since our obfuscated texts are up to 97%
identical to their unobfuscated versions. This is why
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Verifier Unobfuscated Obfuscated Difference

AUC C@1 FS AUC C@1 FS AUC C@1 FS

a) PAN13

bagnall15 0.86 0.79 0.68 0.74 0.64 0.48 0.11 0.15 0.20
castillojuarez14 0.49 0.43 0.21 0.50 0.53 0.27 -0.02 -0.10 -0.06
castro15 0.93 0.77 0.71 0.87 0.73 0.64 0.06 0.03 0.08
frery14 0.62 0.57 0.35 0.37 0.40 0.15 0.25 0.17 0.20
khonji14 0.86 0.76 0.65 0.70 0.60 0.42 0.16 0.16 0.23
kocher15 0.75 0.64 0.48 0.77 0.65 0.50 -0.02 -0.01 -0.02
layton14 0.62 0.67 0.41 0.47 0.53 0.25 0.15 0.13 0.16
mezaruiz14 0.75 0.65 0.49 0.57 0.53 0.30 0.18 0.12 0.19
mezaruiz15 0.73 0.71 0.52 0.50 0.53 0.26 0.24 0.18 0.26
modaresi14 0.50 0.50 0.25 0.47 0.50 0.24 0.03 0.00 0.02
moreau14 0.77 0.62 0.48 0.61 0.51 0.32 0.16 0.11 0.17
moreau15 0.71 0.47 0.33 0.60 0.47 0.28 0.12 0.00 0.05
singh14 0.39 0.33 0.13 0.44 0.43 0.19 -0.06 -0.10 -0.06
zamani14 0.75 0.70 0.53 0.71 0.70 0.50 0.05 0.00 0.03

Average 0.10 0.06 0.10

b) PAN14 Essays

bagnall15 0.57 0.55 0.31 0.43 0.45 0.19 0.14 0.10 0.12
castillojuarez14 0.55 0.58 0.32 0.55 0.58 0.32 0.00 0.00 0.00
castro15 0.62 0.59 0.36 0.51 0.53 0.27 0.11 0.05 0.09
frery14 0.72 0.71 0.51 0.68 0.68 0.46 0.04 0.03 0.05
khonji14 0.60 0.58 0.35 0.41 0.50 0.20 0.19 0.09 0.15
kocher15 0.63 0.59 0.37 0.61 0.57 0.35 0.02 0.02 0.02
layton14 0.59 0.61 0.36 0.51 0.53 0.27 0.08 0.08 0.09
mezaruiz14 0.57 0.56 0.32 0.49 0.51 0.25 0.08 0.04 0.07
mezaruiz15 0.52 0.52 0.27 0.32 0.37 0.12 0.21 0.16 0.16
modaresi14 0.60 0.58 0.35 0.57 0.57 0.32 0.04 0.01 0.03
moreau14 0.62 0.60 0.37 0.51 0.53 0.27 0.11 0.07 0.10
moreau15 0.57 0.52 0.30 0.50 0.51 0.26 0.07 0.01 0.04
singh14 0.70 0.66 0.46 0.61 0.61 0.37 0.09 0.04 0.08
zamani14 0.58 0.55 0.32 0.48 0.49 0.23 0.11 0.06 0.09

Average 0.09 0.05 0.08

Verifier Unobfuscated Obfuscated Difference

AUC C@1 FS AUC C@1 FS AUC C@1 FS

c) PAN14 Novels

bagnall15 0.68 0.68 0.47 0.61 0.59 0.36 0.07 0.09 0.10
castillojuarez14 0.63 0.62 0.39 0.59 0.56 0.33 0.04 0.05 0.06
castro15 0.64 0.51 0.33 0.50 0.39 0.19 0.14 0.12 0.13
frery14 0.61 0.59 0.36 0.59 0.57 0.34 0.02 0.02 0.02
khonji14 0.75 0.61 0.46 0.71 0.58 0.41 0.04 0.03 0.05
kocher15 0.63 0.57 0.36 0.66 0.59 0.39 -0.03 -0.02 -0.03
layton14 0.51 0.51 0.26 0.50 0.50 0.25 0.01 0.01 0.01
mezaruiz14 0.66 0.61 0.41 0.64 0.62 0.40 0.02 0.00 0.01
mezaruiz15 0.56 0.51 0.28 0.57 0.51 0.29 -0.01 0.00 0.00
modaresi14 0.71 0.72 0.51 0.69 0.69 0.47 0.02 0.03 0.03
moreau14 0.60 0.52 0.31 0.56 0.51 0.29 0.04 0.01 0.03
moreau15 0.64 0.50 0.32 0.61 0.53 0.32 0.03 -0.03 0.00
singh14 0.66 0.58 0.38 0.63 0.56 0.35 0.03 0.02 0.03
zamani14 0.73 0.65 0.48 0.71 0.63 0.44 0.03 0.02 0.03

Average 0.03 0.02 0.03

d) PAN15

bagnall15 0.81 0.76 0.61 0.72 0.71 0.51 0.09 0.05 0.10
castillojuarez14 0.64 0.64 0.41 0.55 0.55 0.30 0.09 0.09 0.11
castro15 0.75 0.69 0.52 0.72 0.68 0.49 0.03 0.01 0.03
frery14 0.54 0.46 0.25 0.47 0.43 0.20 0.07 0.04 0.05
khonji14 0.82 0.65 0.53 0.59 0.49 0.49 0.23 0.16 0.24
kocher15 0.74 0.69 0.51 0.72 0.66 0.48 0.02 0.02 0.03
layton14 0.67 0.50 0.34 0.49 0.50 0.25 0.18 0.00 0.09
mezaruiz14 0.65 0.61 0.40 0.55 0.54 0.30 0.10 0.07 0.10
mezaruiz15 0.74 0.69 0.51 0.55 0.53 0.29 0.19 0.16 0.22
modaresi14 0.40 0.41 0.16 0.39 0.40 0.16 0.01 0.00 0.00
moreau14 0.66 0.58 0.38 0.52 0.49 0.25 0.14 0.09 0.13
moreau15 0.71 0.64 0.45 0.52 0.49 0.26 0.19 0.15 0.20
singh14 0.78 0.50 0.39 0.66 0.50 0.33 0.12 0.00 0.06
zamani14 0.74 0.67 0.50 0.71 0.66 0.47 0.04 0.00 0.03

Average 0.11 0.06 0.10

Table 7: Results of the top verifiers of PAN 2013–2015 before and after obfuscating the four task corpora. FS (Final Score) is the
product of ROC-AUC and C@1. On average, we degrade AUC by at least 10 and C@1 by about 6 percentage points on three of
the corpora, though much less on the PAN14 Novels corpus. Most noticeably, we can reduce the FS of bagnall15 [2] (winning
submission of PAN 2015) by 10–20 percentage points on all four corpora. The best obfuscation results on each corpus are marked
bold. Verifiers that were improved are highlighted in red.

we resort to manually inspecting obfuscated texts and
the changes made. Below is an excerpt of an original
text along with the obfuscations applied to it. Selected
trigrams are underlined, removed words are struck out,
and inserted words are highlighted:

’It was the only chance we hadw ehad to win.’ Duke
swallowed the idea slowly. He couldn’t picture a
planetsatellite giving up its last protection
for aphi desperate effort to end the war on purely
offensive drive. Three billion people watching the
home fleet take off, knowingdeciding the skies were
openresort for all the hellmischief that a savage
enemy could send! On Earth, the World Senate hadn’t
permitted the building of one battleshipfrigate,
for fear of reprisal. [...]

Excerpt of Victory by Lester del Rey

We selected an example where, by chance, different
operators were applied in close vicinity. This “density”
of operations is not representative. We can see both
high- and low-quality replacements at work. Most can
be attributed to the WordNet synonym operator. The
replacement of “a” with “phi” is clearly such a case.

The more suitable replacements originate from more
context-dependent replacements, whereas “we had” →
“w ehad” is a result of the flip operator.
For comparison with related work, we carried out a
human assessment of a few random obfuscation samples
as per the PAN obfuscation task. We achieved an overall
grade of about 2.6 (1 = excellent, 5 = fail), which places
us somewhere within the top three submissions.
While the obfuscated text probably is not fit for publi-
cation, it does look promising even with our basic set of
paraphrasing operators. The text was generated within
a few minutes and passes the verifiers without being rec-
ognized as a same-author case. Texts from other cases
look similar: a mixture of poor and good operations,
where according to our own review about half of the
changes made are still rather nonsensical. Since our set
of operators is just a proof of concept, we will devise
more sophisticated ones and better weighting schemes
in future work, which is vital for achieving acceptable
text quality. Promising approaches already exist, such
as neural editing, paraphrasing, and targeted neural
style transfer [16, 17, 55].
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7 Author Obfuscation Robustness

The strong effectiveness against existing authorship
verification systems merits further analysis of the safety
of an obfuscation against targeted reverse obfuscation
attacks. In this regard, it is important to keep in mind
that obfuscation safety against existing verification ap-
proaches does not necessarily imply safety against hu-
man readers, or targeted attackers. Although it is obvi-
ously desirable to obfuscate against all three, achieving
only one goal may be sufficient in many cases. For
example, a forensic linguist may never even start to
investigate a text if it was not flagged by a broader
general-purpose verification system before. Neverthe-
less, in what follows we devise a targeted attack to
reverse the effect our heuristic obfuscation has, exploit-
ing the fact that an attacker has perfect knowledge of
how our algorithm works (i.e., Kerckhoff’s principle),
followed by an evaluation of its success.

7.1 Reverse Obfuscation Attack

Assuming the applied obfuscation operators were pow-
erful enough to produce high-quality text able to go
unnoticed by human readers (an assumption which
is out of scope of our prototype, but one which we
make with regard to recent advances in text genera-
tion), the most probable attack is one considering the
text’s inherent statistics. Algorithmic modification of
a text’s n-gram distribution inevitably leads to statis-
tical anomalies if one is not particularly careful about
maintaining an unsuspicious target distribution. The
main shortcoming of maximum-effectiveness KLD ob-
fuscation is its resulting skew towards unnaturally rare
n-grams, which a statistical evaluation of the text could
reveal. This in itself only gives away that the text was
tampered with, but not necessarily its original author.
At this point, however, we may fall victim to our basic
experimental setup, which only considers two specific
texts without additional context or general stylistic
knowledge about their author. In this reduced scenario,
a much more severe vulnerability arises if an attacker
gets hold of the text that was used as a reference for
sufficient obfuscation.
Our obfuscation approach manipulates the text’s n-
gram distribution with regard to maximizing the KLD
gradient quotient P [i]/Q[i] by reducing frequencies in Q.
For a reverse obfuscation, the same approach can be fol-
lowed through in the opposite direction, i.e., by repeat-
edly selecting the n-gram i which maximizes P [i]/Q[i]
and increasing its frequency in Q (thus minimizing the
KLD). Although this reverse obfuscation will not re-
store the original text, it will gradually approximate
its original distribution. The average speed at which
the two text representations converge will be highest
between the obfuscated text and the text that was used
to perform the obfuscation. Moreover, an attacker is
at a significant advantage, since they do not have to

actually generate text but can simply adjust the n-gram
writing style representations directly.

7.2 Evaluation

To show this effect in practice, we set up an experiment
measuring the effect of reverse obfuscation on an ob-
fuscated text against (1) the original obfuscation text,
(2) another unseen text written by the same author,
and (3) a random text by a different author. Since only
measuring the influence of reverse obfuscation does not
require actual text modifications (and we could not
reliably restore the original n-grams at their original
positions anyway), it is sufficient to show its effects on
the abstract frequency vector representations. Figure 4
visualizes the meta classification hyperplane distances
of the tested same-author text pairs before obfuscation,
after obfuscation, and after reverse obfuscation, con-
trasting the use of the obfuscation text and an unrelated
text side by side.
Using the Webis Authorship Verification Corpus, a
naive greedy obfuscation with 100 iterations was able to
reduce the unmasking meta classification (as described
in Section 3) from 26 true positives to ten. A heuristic
obfuscation using a strong adaptive threshold of ε0.5
achieved a reduction to only eight true positives. After
applying 40 iterations of reverse obfuscation with the
original obfuscation text, however, we were able to
increase this number to 28, which even exceeded our
starting point of 26. The same observation held for a
stronger obfuscation threshold of ε0.7 where we saw an
increase from zero true positives to eleven true positives
after the same 40 iterations of reverse obfuscation. We
repeated the experiment using a third text by the same
author and finally a text by a different author. In either
case, we could increase the number of true positives
by only three. For restoring the original number of
true positives, more than 200 iterations were necessary,
obviously at the cost of equally many false positives.

7.3 Discussion

Although we were unable to find a distinction between
the reverse obfuscation behavior of a third text by
the same author and a text by a different author, we
could clearly single out the text that was used originally
for creating the obfuscation. Hence, these experiments
provide us with crucial evidence that the obfuscation
text assumes the role of a “key” which needs to be
kept secret for the safety of the obfuscation. Unfortu-
nately, such an attack is difficult to come by in terms of
the experimental setup, since in practice only few text
samples of an author are usually known. Over the 41 ob-
fuscated texts in our test set, the heuristic obfuscation
process created a total of 450 additional rare n-grams
with a frequency of one. Using these rare n-grams as a
starting point for reverse obfuscation quite obviously
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Figure 4: Distances of 41 same-author text pairs from the unmasking meta classification hyperplane before obfuscation (yellow),
their relative shift downwards after a fixed 100 rounds of obfuscation (blue arrows), and finally their shift upwards after 40 iterations
of reverse obfuscation (green). The left-hand graph shows reverse obfuscation using the original “key” text, the right-hand graph
shows reverse obfuscation using a random text written by a different author. With the “key” text, a much faster approximation of
the original distance can be seen for all pairs. In most of these cases, the reverse obfuscation even overshoots adding to the original
hyperplane distance of the unobfuscated text.

results in the KLD gradient explosion we observed. As
a possible countermeasure, less effective n-grams from
the center of the distribution could be picked. This
would result in more modifications to the text in order
to achieve the same effectiveness, but it would allow
for “hiding” of the manipulated n-grams between other
n-grams of similar frequency. Such a more modest ob-
fuscation could be augmented by a global optimization
strategy for avoiding unwanted side effects, such as the
inadvertent introduction of too many entirely new or
unusual n-grams caused by word or character replace-
ments, thus ensuring an overall unsuspicious target
distribution. The latter could be achieved by measuring
the divergence from a set of unrelated impostor texts
or, more generally, the expected Zipf distribution. In
theory, this adjusted approach may seem like an ideal
obfuscation method, though it remains to be seen how
effective this strategy can be applied in practice while
also maintaining proper textual entailment with the
original unobfuscated text.

8 Conclusion

We introduced a promising new paradigm for author-
ship obfuscation and implemented a first fully func-
tional prototype that is able to obfuscate texts against
an adapted variant of Koppel and Schler’s unmasking
and other state-of-the-art approaches. We identified and
addressed the following challenges: measuring style sim-
ilarity in a manner that is agnostic to state-of-the-art
verifiers, identifying those parts of a text that have the
highest impact on style, and devising and analyzing a
search heuristic amenable for informed search. Further,
we identified potential vulnerabilities in the application
of said approach and proposed remedies for making it
more robust against reverse obfuscation attacks.

Our study opens up interesting avenues for future re-
search, such as the development of more powerful, tar-
geted paraphrasing operators and theoretical analyses
of the search space properties. We consider heuristic
search-based authorship obfuscation a key enabling
technology that, combined with tailored deep gener-
ative models for paraphrasing, will yield better and
stronger obfuscations.
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