
EfficientQuery Obfuscation with Keyqueries
Maik Fröbe Eric Oliver Schmidt Matthias Hagen

Martin-Luther-Universität Halle-Wittenberg

ABSTRACT
Search engine users who do not want a sensitive query to actually
appear in a search engine’s query log can use query obfuscation
or scrambling techniques to keep their information need private.
However, the practical applicability of the state-of-the-art obfus-
cation technique is rather limited since it compares hundreds of
thousands of candidate queries on a local corpus to select the final
obfuscated queries. We propose a new approach to query obfusca-
tion combining an efficient enumeration algorithm with so-called
keyqueries. Generating only hundreds of candidate queries, our
approach is orders of magnitude faster and makes close to real-time
obfuscation of sensitive information needs feasible.

Our experiments in TREC scenarios on the ClueWeb corpora
show that our approach achieves a retrieval effectiveness compara-
ble to the previous exhaustive candidate generation at a run time of
only seconds instead of hours. Overall, 75% of the private informa-
tion needs can be obfuscated while retrieving at least one relevant
document of the original private query—that itself will not appear
in the search engine logs. To further improve a user’s privacy, the
query obfuscation can easily be combined with other client-side
tools like TrackMeNot or PEAS fake queries, and TOR routing.

CCS CONCEPTS
• Information systems→ Query reformulation;Web searching
and information discovery; • Security and privacy → Privacy
protections.

KEYWORDS
Query Obfuscation; Private Information Retrieval; TREC evaluation
ACM Reference Format:
Maik Fröbe, Eric Oliver Schmidt, and Matthias Hagen. 2021. Efficient Query
Obfuscation with Keyqueries. In IEEE/WIC/ACM International Conference on
Web Intelligence (WI-IAT ’21), December 14–17, 2021, ESSENDON, VIC, Aus-
tralia. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3486622.
3493950

1 INTRODUCTION
Privacy and confidentiality are current challenges in the field of
information retrieval [12]. One respective research direction ad-
dresses the anonymization of query logs [21, 26, 43] to avoid sce-
narios like the deanonymization of users when the AOL query log

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9115-3/21/12. . . $15.00
https://doi.org/10.1145/3486622.3493950

was released.1 However, any such privacy techniques applied on
the search engine side require users to trust the search engine. This
trust might be unacceptable for users with some very sensitive infor-
mation need, especially given recent news that the police can access
query logs;2 unthinkable and in conflict with the Bill of Rights if
someone used traditional libraries to obtain their information.

User-side query obfuscation techniques can improve privacy
and confidentiality without any need to trust the search engine.
Corresponding algorithms [4–7] derive alternative queries that are
submitted to the search engine instead of the actual query. Hence,
the sensitive query itself never appears in the search engine’s log,
which would happen for other privacy techniques like hiding the
actual query in a stream of fake queries—an attacker would then
still know that the sensitive query exists. The challenge of query
obfuscation is to derive alternative, less sensitive queries that do
not directly reveal “secrets” the user perceives as private while still
returning results relevant to the original query.

The existing query obfuscation approaches [4–7] derive queries
that, on a local corpus, retrieve results similar to the original private
query. While those approaches are effective in coming up with good
alternative queries, they do so by running hundreds of thousands of
candidate queries against the private corpus. To reduce the computa-
tional effort and to enable an actual practical applicability with close
to real time efficiency, we propose a new approach that generates
only hundreds of candidates while maintaining the effectiveness of
the previous approaches. Our new approach first retrieves the top
results of the private query on the private corpus as target docu-
ments and from them extracts promising keywords and keyphrases
as the vocabulary for obfuscated queries. To formulate minimal
query obfuscation candidates, we employ keyqueries [18, 19] that
retrieve (some of) the target documents in the top ranks against the
private corpus. Skipping non-minimal queries (in the sense of term
sets) and using a practically efficient enumeration algorithm from
the field of hypergraph transversal generation, our new approach
is orders of magnitude more efficient than the previous obfusca-
tion methods. In a final step, the candidate obfuscation queries are
ranked and optionally presented to the user to select the queries
that can be submitted to the public search engine. The results of
these queries are then locally re-ranked and presented to the user.

We compare our new query obfuscation algorithm to the existing
approach of Arampatzis et al. [5] on the ClueWeb09 and ClueWeb12
crawls using 63 TREC Web Track topics with sensitive information
needs. In the evaluation, we simulate that users obfuscate queries
on a small local corpus and then submit the obfuscated queries to
a search engine indexing a disjoint and much larger corpus. We
conduct a user study on candidate queries that should be removed
to not reveal the private information need. Altogether, ignoring
1https://www.nytimes.com/2006/08/09/technology/09aol.html
2https://www.cnet.com/news/google-is-giving-data-to-police-based-on-search-
keywords-court-docs-show

https://doi.org/10.1145/3486622.3493950
https://doi.org/10.1145/3486622.3493950
https://doi.org/10.1145/3486622.3493950
https://www.nytimes.com/2006/08/09/technology/09aol.html
https://www.cnet.com/tech/services-and-software/google-is-giving-data-to-police-based-on-search-keywords-court-docs-show/
https://www.cnet.com/tech/services-and-software/google-is-giving-data-to-police-based-on-search-keywords-court-docs-show/

non-minimal queries, as our efficient enumeration scheme does,
comes with a nice regularizing effect: often it even increases the
retrieval effectiveness while at the same time reducing the number
of generated candidates by 17–19% and dramatically reducing the
overall number of locally submitted queries by orders of magnitude.
The approach with the best efficiency/effectiveness tradeoff obtains
a Precision@10 of 0.38 on par with the state-of-the-art query obfus-
cation of Arampatzis et al. [5], while on average submitting only
784 candidate queries instead of hundreds of thousands. We make
all data and software publicly available to simplify reproducibility.3

2 RELATEDWORK
We review the existing tools for private web search that improve
users’ privacy without requiring any trust in search engines, and ex-
isting approaches to query obfuscation as an orthogonal technique
to current privacy tools.

Tools for Private Web Search. Search engines log user interactions
for continuous improvements, e.g., to learn ranking models [23,
28] or to personalize results via user profiles [37]. Collecting the
required huge query logs received negative attention [31, 39], and,
although not intended, server-side anonymization can fail [24].

Hence, many privacy techniques aim at impeding data collection
by search engines, hiding the private query within additional cover
queries [3, 14, 31, 32, 39, 42]. TrackMeNot provided the first imple-
mentation of such techniques by submitting cover queries sampled
from popular queries [31, 39]. Ensuring some semantic similarity
allows selecting cover queries similar to the private query on un-
related topics, thus better hiding the private query [30]. However,
users may experience suboptimal retrieval performance since the
cover queries can introduce noise to their profile [10], which moti-
vates fine-grained adaptions to cover queries following user-defined
personalization / privacy tradeoffs [2, 3]. Instead of submitting addi-
tional cover queries, PEAS combines the private querywithmultiple
fake queries using a logical OR [33]. Still, those queries might be
linked across user sessions, e.g., based on IP addresses [34].

The privacy level introduced by tools like TrackMeNot or PEAS
can further be increased in combination with tools for private
web browsing. While all major browsers include private browsing
modes, they cant provide perfect privacy [1] (e.g., fingerprinting
browsers, with features such as the screen resolution, timezone
installed fonts etc., is still possible in private browsing modes [1]).
Hence, more advanced approaches use anonymous communication
via TOR routing [13, 17], advanced strategies to handle cookies [35],
or they intercept HTTP communication [34] filtering out identi-
fying information such as cookies or timing attacks. Altogether,
those (combinations of) tools improve the privacy of web searchers.
However, they still submit the private query to the search engine,
revealing the existence of the private information need that ends
up as a query in the search engines’ log.

Query Obfuscation. Query obfuscation approaches, introduced
by Arampatzis et al. [6], replace the private query with a set of
less sensitive queries and combine the results at the searcher’s
end into a single ranking, preventing the private query from being
submitted to the search engine. Query obfuscation works in two
3https://github.com/webis-de/wi21-query-obfuscation-with-keyqueries

steps. In the first step, a candidate generation produces candidate
queries. Second, a candidate selection chooses the candidate queries
submitted to the public search engine. There are semantic and
statistical approaches to query obfuscation, using different methods
for the candidate generation and selection.

Semantic query obfuscation [6, 7] leverages semantic relations
between terms, replacing the private query with sets of queries
representing more general concepts. The WordNet taxonomy [29]
is used to generate candidate queries by extracting hyponyms, i.e.,
more general terms with an “is-kind-of” relationship to a query
term. Query candidates are selected with a user-defined similar-
ity threshold, where semantic similarity is measured using the
distance in WordNet [36], discarding candidate queries above the
threshold. Semantic query obfuscation comes with two drawbacks.
First, obfuscated queries have a semantic relationship to the private
query, introducing the risk of revealing the private information
need. Second, the extraction of terms from WordNet does not take
into account that some terms are more effective in retrieving rele-
vant documents than others.

Statistical query obfuscation [4, 5] addresses both problems by
using a private search engine for the generation and selection of
the candidate queries, yielding a better retrieval effectiveness. The
private query is submitted to the private search engine, using the
top-ranked documents as target documents for candidate genera-
tion and candidate selection. During candidate generation, a sliding
window covering 16 consecutive terms moves over the target doc-
uments, emitting all one-, two-, and three-term combinations oc-
curring in the same sliding window as candidates. Afterwards, the
candidate selection removes candidate queries that do not meet the
user specified privacy level by removing queries that retrieve too
few documents on the private search engine. Finally, the remaining
candidate queries with the highest pointwise mutual information
for the target documents are submitted to the public search engine.

Arampatzis et al. [6, 7] conducted a recall-oriented evaluation
of query obfuscation on the ClueWeb09B corpus using 95 sensi-
tive queries extracted from the AOL query log. In their case, the
private search engine indexes 50,000 documents sampled from the
ClueWeb09B. Statistical query obfuscation retrieves 56–76% of the
top-50 documents retrieved for the private query, compared to
22–25% retrieved by semantic query obfuscation. However, those
excellent results come at non-negligible costs: first, the number of
candidate queries submitted to the private search engine is huge,
and second, Arampatzis et al. apply only a lightweight privacy level
that leads to, for instance, obfuscating the private query gun rack

by the not really less sensitive queries gun or gun light.
Our new approach to query obfuscation drastically reduces the

number of candidates examined locally by statistical query obfus-
cation while maintaining the good retrieval effectiveness. Addition-
ally, we increase the privacy level (e.g., prohibiting that the query
gun rack is obfuscated by gun) by considering the popular hypothe-
sis that information needs are non-specifiable [8]. We believe that
only users can assess if an obfuscated query reveals the private
information need or not. Hence, we include a step in which the
user must confirm the obfuscated queries before submitting them
to the public search engine. We evaluate this setup in a user study,
supporting the participants with automatic filtering inspired by
semantic query obfuscation.

https://github.com/webis-de/wi21-query-obfuscation-with-keyqueries

3 APPROACH
We first describe exhaustive approaches to generate query candi-
dates (one existing, two new ones) and scoring schemes to select
the best candidates (the best from the previous work and a new
additional one). To compute the selection scores, all approaches
submit all candidates to the local search engine. To reduce that num-
ber of local query submissions, we then present our new efficient
approach based on the concept of keyqueries and an enumeration
algorithm from the field of hypergraph transversal generation.

3.1 Exhaustive Query Candidate Generation
The goal of the candidate generation phase is to identify combina-
tions of terms as query candidates that could be used to replace a
given private query. The respective approaches use the top-𝑛 results
of the private query as the target documents (we set 𝑛 = 10) and try
to identify other queries that retrieve many of the targets. We de-
scribe the candidate generation approach of Arampatzis et al. [4, 5]
and two new candidate generation approaches.

In each candidate generation approach, we suggest to use a filter
list to remove terms that could reveal the private information need.
The list contains all terms from the private query and, inspired by
semantic query obfuscation [6, 7], also all synonyms, hyponyms,
and hypernyms fromWordNet [29]. Matching possible query terms
against the filter list is done by normalizing all terms with Lucene’s
default tokenization, lower casing, and Porter stemming [40] to
also identify inflected forms. By using the filter list, we employ a
more restrictive level of privacy than Arampatzis et al. [5], who
only ensured that the original private query is not submitted as
a whole. Still, the queries gun or gun light were valid obfuscated
queries for the private query gun rack in the setup of Arampatzis et
al. [5]. Our idea of including a filter list ensures that such revealing
candidates are automatically removed. Additionally, our overall
obfuscation approach includes a phase where users review the
remaining queries to further remove sensitive candidate queries
before any query is submitted to the public search engine, ensuring
that obfuscated queries do not reveal the private information need.

Sliding Window. Arampatzis et al. [4, 5] proposed to generate
candidate queries from terms that appear close to each other in
some target document. They move a window of width 16 over a
target document’s main content (in our case, extracted with boiler-
pipe [25]). From a window’s content, Arampatzis et al. remove all
stop words (in our case, Lucene’s default stop word list for English).
Additionally, we also remove all terms from the filter list since those
terms might reveal the private information need. The unique un-
ordered combinations of one, two, or three of the remaining terms
are the candidate queries. Arampatzis et al. chose a window width
of 16 terms to ensure that the terms are related to each other [38]
and they chose combinations of up to three terms to ensure that
the number of candidate queries remains feasible.

Still, sliding window candidate generation is a brute force
method, with all advantages and disadvantages. On the one hand,
the exhaustive nature of the generated candidate queries some-
what gives an empirical upper bound on the retrieval effectiveness.
On the other hand, the number of generated candidate queries
quickly grows in practice—and all of them are submitted to the
private search engine. A single window with 10 unique terms yields

(10
1
)
+
(10
2
)
+
(10
3
)
= 175 unordered one-, two-, and three-term combi-

nations. The actual total number of generated queries is not really
restricted: the longer the extracted main content of a target docu-
ment is, the more candidate queries will be created (easily yielding
hundreds of thousands of candidate queries as shown in Section 4).

Noun Phrases. To reduce and better control the number of candi-
dates compared to the sliding window approach, our first new can-
didate generation approach uses the typical components of human
keyword queries: noun phrases. From the combined set of target
documents, we extract the frequency-wise top-𝑝 noun phrases (we
set 𝑝 = 10) and generate all combinations from this vocabulary as
the candidate queries. In contrast to the sliding window generation,
the number of generated candidates now is fixed. A set of 𝑝 unique
noun phrases yields 2𝑝 − 1 unique non-empty candidate queries
(i.e., the power set of the vocabulary without the empty query). All
of these candidates are submitted to the private search engine (e.g.,
1023 candidates for 𝑝 = 10).

On each target document’s main content (extracted by boil-
erpipe), we apply OpenNLP’s part-of-speech tagger4 to identify
groups of two to five consecutive terms that contain only adjectives
and at least one noun (i.e., the “noun phrases”) because they mimic
typical keyword searches. From the resulting noun phrases, we
remove the ones that contain a term from the filter list and near-
duplicate noun phrases (normalized by lowercasing and stemming;
the most frequent original noun phrase from a group of normalized
duplicates is kept). From the extracted noun phrases, we choose
the ones that are contained in the most target documents (lower-
cased and stemmed), breaking possible ties by the total number of
occurrences in the target documents. This strategy is motivated
by the idea that more common phrases tend to be less specific and
therefore less sensitive with respect to the private query.

TF-IDF. Our second new candidate generation approach is based
on the idea that terms occurring often in a target document but
rarely in other documents may help to retrieve the target document
at high ranks. Hence, by ordering terms from a target document
by their TF-IDF scores (term frequency times inverse document
frequency), the most characteristic ones for the target document
could be selected as the query vocabulary. To be able to exploit
that idea, ideally, the private search engine provides a fast lookup
functionality for document and term frequencies. But since stan-
dard baseline retrieval systems like BM25 with RM3 [27] work on
document vectors, it is also reasonable to assume that the private
search engine directly provides access to document vectors.

Given𝑛 target documents (we set𝑛 = 10) and access to document
vectors, our new TF-IDF approach selects the 𝑡 terms from a target
document that have the highest TF-IDF score (excluding terms from
the filter list; we set 𝑡 = 7). All unique combinations of these terms
form the candidate queries for that target document. The maximum
number of candidates generated by the TF-IDF approach thus is
𝑛 · (2𝑡 − 1) (e.g., at most 1270 candidates for 𝑛 = 10 and 𝑡 = 7).

Comparison. Different to Arampatzis et al.’s candidate queries
with terms from 16-words windows, the noun phrase and the TF-
IDF candidate generation are able to combine terms not occurring
close to each other and better control the number of candidates.
4https://opennlp.apache.org/

https://opennlp.apache.org/

3.2 Scoring Query Candidates
Query obfuscation approaches score candidate queries to select the
ones that should be submitted to the public search engine. To this
end, the above exhaustive approaches submit each candidate query
to the private search engine and then measure some metric for
the results. Arampatzis et al. [5] conducted pilot experiments with
precision, recall, F-measure, pointwise mutual information (PMI),
and normalized PMI. They found that PMI worked best—basically,
the number of results that both the private and the candidate query
return divided by the product of the individual numbers of results.

In addition to PMI, we also use the normalized discounted cu-
mulative gain (nDCG) [22] where the target documents form the
relevant class (information gain of 1, all other documents get 0).
The higher the nDCG of some query with respect to the target doc-
uments, the higher the target documents are ranked. Also MAP or
similar measures could be suited, but we prefer nDCG since MAP
nowadays is criticized for a rather unrealistic user model [16].

3.3 Keyquery-Based Candidate Generation
To reduce the number of candidate queries submitted to the private
search engine, our newmore efficient approach constructs so-called
keyqueries [18, 19] for the target documents of the private query
from a given vocabulary (e.g., noun phrases or TF-IDF terms). A
query 𝑞 is a keyquery for a set of target documents 𝐷 against a pri-
vate search engine 𝑃 , iff 𝑞 fulfills the following three conditions [19]:
(1) every 𝑑 ∈ 𝐷 is in the top-𝑘 results returned by 𝑃 for 𝑞, (2) 𝑞 has
at least 𝑙 results, and (3) no 𝑞′ ⊂ 𝑞 fulfills the first two conditions.

The first two conditions (i.e., the parameters 𝑘 and 𝑙) define
the specificity and the generality of a keyquery. We set 𝑘 = 10
and 𝑙 = 100 to ensure that a keyquery does not reveal the private
information need by retrieving exactly the target documents. The
third condition is a minimality constraint allowing us to skip the
submission of non-minimal query candidates to the private search
engine. We argue that minimality is important since the private
search engine differs from the public search engine in the indexed
documents and the retrieval model. The minimality requirement
against the private search engine helps to avoid adding terms to a
query that is already “good enough” (i.e., that retrieves the target
documents at high ranks) and thus helps to mitigate overfitting.

Given some query vocabulary𝑉 for the target documents 𝐷 (e.g.,
noun phrases or TF-IDF terms), the set Q = 2𝑉 \ {∅} represents
the possible candidate queries that can be formulated with terms
from 𝑉 . This set Q might not always contain queries that actually
return all target documents in their top-𝑘 results (even for large 𝑘).
Hence, we relax the first keyquery condition and require that a
keyquery retrieves at least𝑚 of the target documents within the
top-𝑘 results of the private search engine 𝑃 (we set 𝑚 = 3 as it
worked well in pilot experiments).

Algorithm 1 gives the pseudocode of our keyquery-based candi-
date generation and scoring. The algorithm efficiently enumerates
all queries from Q while skipping queries that violate the minimal-
ity constraint, thus reducing the number of candidates submitted
to the private search engine. The algorithm is a modified version
of the HBC algorithm [20] (acronym of the authors’ names: Hébert,
Bretto and Crémilleux) that was originally proposed for the prob-
lem of transversal hypergraph generation. Even though not being

Algorithm 1 Keyquery generation using the HBC enumeration scheme

Input: Target documents 𝐷
Keyquery parameters 𝑘 , 𝑙 , and𝑚
Vocabulary𝑉 (sliding window, noun phrases, or TF-IDF)
Query complexity 𝑐 (length in number of vocabulary terms)
Candidate scoring function score (PMI, nDCG)

Output: Keyqueries𝑄
Priority queue 𝑆 with score-ranked candidate queries

1: 𝑄 ← ∅
2: 𝑆 ← ∅
3: 𝐶1← 𝑉

4: 𝐶𝑖 ← ∅ for 𝑖 ∈ {2, . . . , 𝑐 }
5: for all 𝑣 ∈ 𝑉 do
6: 𝑅 ← results of 𝑣 against private search engine
7: if |𝑅 | > 𝑙 then
8: 𝑆.add(𝑣, score (𝑅))
9: 𝐷′ ← { top-𝑘 results from 𝑅 }
10: if |𝐷′ ∩𝐷 | ≥𝑚 then // (i.e., 𝑣 is keyquery)
11: 𝑄 ← 𝑄 ∪ {𝑣 }
12: 𝐶1 ← 𝐶1 \ {𝑣 }
13: 𝑖 ← 1
14: while𝐶𝑖 ≠ ∅ ∧ 𝑖 < 𝑐 do
15: for all 𝑞′, 𝑞′′ ∈ 𝐶𝑖 with |𝑞′ ∩ 𝑞′′ | = 𝑖 − 1 do
16: 𝑞 ← 𝑞′ ∪ 𝑞′′
17: if 𝑞 has not been generated yet then
18: if 𝑞 \ {𝑣 } ∈ 𝐶𝑖 for all 𝑣 ∈ 𝑞 then
19: 𝑅 ← results of 𝑞 against private search engine
20: if |𝑅 | > 𝑙 then
21: 𝑆.add(𝑞, score (𝑅))
22: 𝐷′ ← { top-𝑘 search results from 𝑅 }
23: if |𝐷′ ∩𝐷 | ≥𝑚 then // (i.e., 𝑞 is keyquery)
24: 𝑄 ← 𝑄 ∪ {𝑞 }
25: else
26: 𝐶𝑖+1 ← 𝐶𝑖+1 ∪ {𝑞 }
27: 𝑖 ← 𝑖 + 1

output-polynomial for that general generation problem [15], the
basic algorithmic idea helps us to efficiently enumerate candidate
queries up to a specified fixed length of 𝑐 terms from the vocabulary
(we set 𝑐 = 3 for sliding window, 𝑐 = 7 for TF-IDF, and 𝑐 = 5 for
noun phrases since this worked best in pilot experiments). A vo-
cabulary extraction approach may produce multiple vocabularies,
such as the sliding window scheme creating a vocabulary for each
sliding window. In this case, we run the algorithm on each vocabu-
lary and cache results for duplicated query candidates constructed
from vocabularies of different windows.

Like the HBC algorithm, our approach works in stages. In a
pre-processing stage (lines 5–12), all terms from the vocabulary
are identified that already are keyqueries, ensuring that no other
query containing such a term will be enumerated (line 12). In the
𝑖-th stage (lines 14–27), all valid candidates of length 𝑖 + 1 (i.e.,
consisting of 𝑖 + 1 vocabulary terms) are generated. By combining
only valid candidates from the previous stage (lines 15 and 16), the
HBC enumeration scheme ensures that the minimality criterion
is not violated. In our case, this reduces the risk that a candidate
query reveals the private information need by retrieving too few
results (such candidates are pruned in the lines 20 and 23).

Table 1: (a) Overview of the private information needs, and (b) the employed search engines for the ClueWeb09 scenario (CW09;
private search engine indexes CW12b13, public search engine indexes CW09) and the ClueWeb12 scenario (CW12; private
search engine indexes CW09b, public search engine indexes CW12).

(a) Private Information Needs

Example Topics

Category ID Query

Health (35 topics)
A user wants health advice while
hiding a potential disease.

26 lower heart rate
88 forearm pain
266 symptoms heart attack

Personal (22 topics)
A user considers a personal change and
wants to hide this before it is settled.

11 gmat prep classes
18 wedding budget calculator
57 ct jobs

Law/Crime (3 topics)
A user wants legal advice while being
able to reject any criminal intent.

61 computer worm
62 texas border patrol
214 capital gains tax rate

Family Pets (3 topics)
A user has problems regarding a pet
and wants to hide it till a solution.

38 dogs for adoption
50 dog heat
111 lymphoma in dogs

(b) Search Engines

Scenario

CW09 CW12

Pr
iv
at
e
En

gi
ne Corpus CW12b13 CW09b

Documents 52.3m 50.2m
Size 28.9 GB 27.9 GB
Size (w. vectors) 126.3 GB 126.1 GB

Retrieval Anserini [41] in 2 separate variants:
BM25 or QLD.

Pu
bl
ic

En
gi
ne Corpus CW09 CW12

Documents 1.0 b 733.0m
Size 3.6 TB 3.1 TB

Retrieval ChatNoir [9] with BM25F (mul-
tiple fields) and spam removal.

4 EVALUATION
We experimentally compare the obfuscation methods on TRECWeb
track topics that possibly are related to sensitive information needs.
We conduct a user study to ensure that the obfuscated queries
do not reveal the sensitive information need and then submit the
obfuscated queries to a public search engine to compare the retrieval
effectiveness in Cranfield-style experiments.

4.1 Experimental Design
Our experimentation is based on topics from the TREC Web tracks
that used the ClueWeb corpora. We manually reviewed the origi-
nally 300 Web track topics for the ClueWeb09 and the ClueWeb12
and find that 63 of them specify information needs that users might
want to obfuscate (often health-related). Table 1 (a) gives example
topics and the possible categories of private information needs.

Experimental Setup. Our setup represents users with access to
a relatively small private search engine who want to obfuscate
sensitive information needs against a much larger public search
engine. We employ ChatNoir [9] as the public search engine from
which users want to hide their private information needs since
ChatNoir is a research search engine indexing the ClueWeb09 and
ClueWeb12 corpora using main content extraction, language detec-
tion, and metadata extraction (keywords, headings, hostnames, etc.).
ChatNoir ranks documents by combining BM25 scores of multiple
fields (title, keywords, main content, and the full document) and
uses SpamRank scores [11] to remove spam. As the private search
engine, we use two search engines based on Anserini [41], one with
BM25 and one with QLD as the retrieval model (with and without
document vectors required for the TF-IDF candidate generation).
Anserini employs a document processing very different to ChatNoir
(e.g., no main content extraction). Table 1 (b) gives an overview of
the search engines used per scenario. For a ClueWeb09 topic, we

use ChatNoir’s ClueWeb09 index as the public search engine, and
Anserini with BM25 or QLD on the ClueWeb12b13 as the private
search engines (roles switched for a ClueWeb12 topic). Since the
ClueWeb category B subsets only contain the first 50 million Eng-
lish pages from the respective crawl, our setup ensures that the
private search engine has a substantially smaller document corpus
than the public search engine that also works on a different crawl
with a considerably differing retrieval setup. Given the size of less
than 30GB for the indexes of the private search engine, users can
operate such a private search engine at home at moderate costs,
e.g., on a Raspberry Pi (similar to the PI-hole5 for ad blocking).

Candidate Generation. We run the three candidate generation
approaches with and without using the HBC algorithm on the
63 sensitive topics using a private BM25 or QLD search engine. Ta-
ble 2 (a) shows the average number of generated candidate queries
per topic and the average number of candidate queries that retrieve
more than 5 of the 𝑛 = 10 target documents in their top-10 or in
their top-100 results (lines ‘Recall@. . . > 0.5’). Unsurprisingly, the
sliding window generates huge numbers of candidates, over 250,000
for BM25 and even more for QLD, all of which are submitted to
the private search engine for candidate selection. This yields run
times of multiple hours even with high parallelization but, not too
surprising, also yields the most candidates with a recall above 0.5.

The TF-IDF and noun phrase approaches generate much more
feasible numbers of candidates (less than 0.5% of the sliding window
while and still some with recall@10 > 0.5). Applying the HBC al-
gorithm further reduces the number of candidates by 17–19%. Ta-
ble 2 (b) shows the average target document recall@10 and re-
call@100 scores on the private search engine. The candidate queries
on the x-axis are ordered by their per-topic recall (best candidate
5https://pi-hole.net

https://pi-hole.net

Table 2: Overview of (a) the number and (b) the estimated quality of the candidate queries generated by the sliding window [5],
TF-IDF, and noun phrase approaches without and with HBC. The candidate quality is estimated as the recall of the private
query’s target documents against the private search engine (either BM25 or QLD as the retrieval model).

(a) Number of Generated Candidates

Candidate Generation

Sliding Window Noun Phrase TF-IDF

B
M
25

Candidates 253,560.1 1,023.0 1,075.8
(with HBC) 212,409.8 323.9 801.8

Query length 2.7 12.6 3.6
(with HBC) 2.6 8.2 3.1

Recall@10 > 0.5 507.7 67.5 51.8
(with HBC) 35.4 3.6 8.1

Recall@100 > 0.5 1,851.6 246.4 144.1
(with HBC) 979.4 41.8 64.6

Vocabulary 1,117.7 21.6 41.5

Q
LD

Candidates 318,088.1 1,023.0 1,044.0
(with HBC) 266,533.7 316.1 766.8

Query length 2.7 12.5 3.6
(with HBC) 2.6 8.0 3.1

Recall@10 > 0.5 763.5 77.5 57.0
(with HBC) 87.4 3.0 10.6

Recall@100 > 0.5 2,719.8 260.8 160.4
(with HBC) 1,483.5 43.7 74.1

Vocabulary 1,302.1 21.0 40.5

(b) Estimated Quality of Generated Candidates

of a topic at 𝑋=1). The sliding window approach generates candi-
dates with the highest recall—not that surprising for kind of a brute
force enumeration—, but the TF-IDF candidates also provide a very
good recall given that their number is less than 0.5% of the sliding
window candidates. In all cases, generating candidates using QLD
achieves slightly better recall, and applying the HBC algorithm
reduces the recall—also not surprising since HBC does not expand
“already good” queries to avoid overfitting on the private search
engine and to have more general obfuscated queries.

User Study. We conduct a user study with computer science stu-
dents and scholars to identify and remove candidate queries that
reveal the private information need. This way, our study resembles
an obfuscation setup in which the user confirms any query before
it is submitted to the public search engine. A manual inspection is
important because information needs are rather non-specifiable [8],
resulting in users that may not trust automatic approaches remov-
ing sensitive queries for their private information needs.

The study itself consists of two steps. First, for each topic, can-
didates that contain terms of the private query or synonyms, hy-
ponyms, or hypernyms of a query term are automatically removed
to ensure that we invest the annotation budget on candidates that
an automatic process cannot detect easily. From the remaining can-
didates, we collect the top 25 queries of each candidate generation
and selection combination that then in the second step are judged
by the annotators on whether they might still reveal the private in-
formation need. The annotators started by familiarizing themselves
with the topic (i.e., reading the query, the description, the narrative,

and hints we added on potential privacy threats) and then judging
candidate queries in random order.

The annotators assess the candidate queries on a 3-point scale
to identify garbage queries (-1), queries that reveal the private
information need (0), and queries they would allow to submit to
the public search engine (1). The garbage label (-1) indicates low-
quality queries, consisting of many spelling mistakes or nonsense
words that would make such a query conspicuous for the receiving
search engine (e.g., lickspringscasino for the topic lick springs

casino). Contrary to previous studies (cf. Section 2), our annotators
were not allowed to consult the public search engine to assess
whether a query reveals the private information need since real
query obfuscation users would also not want to do so.

During our user study, 21,216 candidate queries were labeled
by two annotators. The Fleiss’ 𝜅 of 0.67 calculated on two top-
ics indicates a good agreement between the annotators. Overall,
252 candidate queries were judged as garbage (label -1), 1,553 as re-
vealing (label 0), and the remaining 19,350 as non-revealing (label 1).
Hence, the users in our study would remove 9.3 % of the generated
queries (1,805 of 21,216). This emphasizes the importance of man-
ually reviewing the generated candidates. Note that the previous
work by Arampatzis et al. [4, 5] neglected this risk by not even
automatically removing terms from the private query from queries
submitted to the public search engine (e.g., “obfuscating” the query
gun rack by gun). Before our subsequent experiments, we apply the
above described automatic filters (synonyms etc.) and remove the
candidate queries labeled as garbage or revealing (label 0 or -1) to
ensure that the obfuscated queries guarantee high privacy levels.

Table 3: Overview of the average number of retrieved relevant documents (‘Relevant’) and the Precision@10 (‘Prec@10’) when 5
(or 20) obfuscated queries are submitted to the public search engine, retrieving the top 10 or top 100 documents from the public
search engine per obfuscated query. Results are reported for 3 candidate generation approaches (without and with HBC), nDCG
or PMI as candidate selection approaches, and BM25 or QLD as the private search engines’ retrieval model.

(a) Top 10 / Top 100 Results for Queries Selected with nDCG

5 Queries 20 Queries

Relevant Prec@10 Relevant Prec@10

B
M
25

Sliding Window 1.31 / 6.39 0.12 / 0.28 3.02 / 10.70 0.21 / 0.34
+ HBC 1.16 / 6.00 0.11 / 0.29 2.69 / 11.85 0.22 / 0.39

TF-IDF 0.87 / 3.26 0.09 / 0.21 2.00 / 6.77 0.19 / 0.35
+ HBC 0.92 / 3.11 0.09 / 0.23 2.11 / 7.69 0.19 / 0.38

Noun Phrase 0.72 / 1.84 0.07 / 0.12 1.33 / 2.97 0.11 / 0.18
+ HBC 0.95 / 2.31 0.09 / 0.16 1.64 / 4.02 0.14 / 0.25

Q
LD

Sliding Window 1.59 / 5.57 0.15 / 0.29 3.31 / 9.39 0.23 / 0.40
+ HBC 1.18 / 5.49 0.12 / 0.29 3.03 / 10.97 0.22 / 0.40

TF-IDF 1.18 / 4.28 0.12 / 0.24 2.21 / 7.93 0.21 / 0.37
+ HBC 1.08 / 4.30 0.11 / 0.25 2.56 / 8.66 0.22 / 0.39

Noun Phrase 0.74 / 1.75 0.07 / 0.16 1.15 / 2.74 0.12 / 0.18
+ HBC 0.62 / 2.44 0.06 / 0.17 1.38 / 4.34 0.11 / 0.23

(b) Top 10 / Top 100 Results for Queries Selected with PMI

5 Queries 20 Queries

Relevant Prec@10 Relevant Prec@10

B
M
25

Sliding Window 0.15 / 0.34 0.02 / 0.03 0.52 / 1.79 0.05 / 0.13
+ HBC 0.20 / 0.69 0.02 / 0.06 1.41 / 5.89 0.13 / 0.29

TF-IDF 0.84 / 3.52 0.08 / 0.22 1.97 / 7.31 0.16 / 0.34
+ HBC 0.80 / 3.54 0.08 / 0.23 1.90 / 8.67 0.15 / 0.35

Noun Phrase 0.89 / 2.49 0.08 / 0.16 1.61 / 3.77 0.15 / 0.23
+ HBC 1.08 / 3.30 0.10 / 0.20 1.89 / 4.49 0.17 / 0.24

Q
LD

Sliding Window 0.11 / 0.36 0.01 / 0.03 0.49 / 1.23 0.05 / 0.09
+ HBC 0.20 / 0.56 0.02 / 0.05 0.93 / 3.33 0.09 / 0.19

TF-IDF 0.54 / 2.75 0.05 / 0.16 1.62 / 6.23 0.14 / 0.28
+ HBC 0.49 / 2.56 0.05 / 0.16 1.54 / 6.51 0.13 / 0.30

Noun Phrase 0.64 / 2.66 0.06 / 0.16 1.26 / 4.11 0.12 / 0.22
+ HBC 0.62 / 2.70 0.06 / 0.17 1.11 / 4.28 0.10 / 0.22

4.2 Experimental Results
Table 3 shows the retrieval effectiveness of all approaches, submit-
ting 5 or 20 obfuscated queries to the public search engine and
retrieving the top-10 or top-100 results per query. All retrieved re-
sults are re-ranked on the user-side with Anserini’s BM25 retrieval
model, measuring the average number of relevant documents re-
trieved and precision@10 of the final ranking. Selecting candidate
queries with the pointwise mutual information achieves lower ef-
fectiveness than when using normalized discounted cumulative
gain and submitting more obfuscated queries, and retrieving more
documents from the public search engine per query improves the
effectiveness (the top-100 results for 20 obfuscated queries in Ta-
ble 3 (a) have the best results). In most cases, the recall observations
on the private search engine (Table 2 (b)) transfer to the effective-
ness that we observe on the obfuscated queries on the public search
engine, i.e., the sliding window approach outperforms TF-IDF, and
the noun phrase approach obtains the lowest retrieval effectiveness.

However, there is one noticeable difference: applying the HBC al-
gorithm often improves the effectiveness of obfuscated queries, both
in terms of retrieved relevant documents and precision@10. Conse-
quently, the best obfuscation approach using BM25 as the private
search engine employs the sliding window approach with the ef-
ficient enumeration of candidate queries by the HBC algorithm
(retrieving 11.85 relevant documents on average at a precision@10
of 0.39). The sliding window approach is closely followed by the TF-
IDF enumeration with HBC (precision@10 of 0.38). Given that this
TF-IDF enumeration with HBC achieves almost the same effective-
ness as the sliding window approach, it is important to notice that
the TF-IDF scheme evaluates only hundreds of candidate queries
(Table 2 (a)). In contrast, the sliding window approach investigates
hundreds of thousands of candidate queries. Hence, the TD-IDF
enumeration with HBC reduces the run time for obfuscating a

single query from hours to only a few seconds while achieving sim-
ilar effectiveness. Using QLD as the retrieval model of the private
search engine shows the same trend but yields a slightly better
precision@10 of 0.40. Further inspecting the number of topics for
which at least one relevant document can be retrieved, we find the
maximum of 75 % for TF-IDF and sliding window (both using HBC).
This is expected since we apply a rigorous privacy level and some
topics only have very few relevant documents making it unrealistic
that all information needs can be obfuscated at such a high pri-
vacy. Overall, our results show that our new approach, especially
combining TF-IDF candidates with the HBC algorithm, achieves
state-of-the-art retrieval effectiveness while drastically reducing
the number of generated candidates and thus the run time.

5 CONCLUSION AND FUTUREWORK
We have presented an approach inspired by previous query obfus-
cation techniques. Still, instead of prohibitively low efficiency, the
application of an enumeration scheme from the transversal hyper-
graph field allows for a close to real time query obfuscation since
orders of magnitude fewer candidate queries are explored. At the
same time, our approach is on a par with respect to retrieval effec-
tiveness with the previous state-of-the-art. While still being kind
of “slow search” in the sense that the obfuscation needs a couple of
seconds or with user feedback even some minutes, one can argue
that in case of a really sensitive information need, users are willing
to invest that time—and minutes are really affordable compared to
an hour or more the previous state-of-the-art did require.

As interesting directions for future work, one could try to further
speed up the process by just taking snippets of the local search
into account instead of full documents for the query vocabulary
generation. We also plan to implement the approach in an app that
can directly be used when wanting to obfuscate queries against any
of the big commercial search engines.

REFERENCES
[1] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. 2010. An

Analysis of Private Browsing Modes in Modern Browsers. In 19th USENIX
Security Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings.
USENIX Association, 79–94.

[2] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2018. Intent-Aware
Query Obfuscation for Privacy Protection in Personalized Web Search. In The
41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, Kevyn Collins-Thompson,
Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz (Eds.). ACM,
285–294.

[3] Wasi Uddin Ahmad, Masudur Rahman, and Hongning Wang. 2016. Topic Model
Based Privacy Protection in Personalized Web Search. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval, SIGIR 2016, Pisa, Italy, Raffaele Perego, Fabrizio Sebastiani, Javed A.
Aslam, Ian Ruthven, and Justin Zobel (Eds.). ACM, 1025–1028.

[4] Avi Arampatzis, George Drosatos, and Pavlos S. Efraimidis. 2013. A Versatile
Tool for Privacy-Enhanced Web Search. In Advances in Information Retrieval -
35th European Conference on IR Research, ECIR 2013, Moscow, Russia (Lecture
Notes in Computer Science, Vol. 7814), Pavel Serdyukov, Pavel Braslavski,
Sergei O. Kuznetsov, Jaap Kamps, Stefan M. Rüger, Eugene Agichtein, Ilya
Segalovich, and Emine Yilmaz (Eds.). Springer, 368–379.

[5] Avi Arampatzis, George Drosatos, and Pavlos S. Efraimidis. 2015. Versatile
Query Scrambling for Private Web Search. Inf. Retr. J. 18, 4 (2015), 331–358.

[6] Avi Arampatzis, Pavlos S. Efraimidis, and George Drosatos. 2011. Enhancing
Deniability Against Query-Logs. In Advances in Information Retrieval - 33rd
European Conference on IR Research, ECIR 2011, Dublin, Ireland. 117–128.

[7] Avi Arampatzis, Pavlos S. Efraimidis, and George Drosatos. 2013. A Query
Scrambler for Search Privacy on the Internet. Inf. Retr. 16, 6 (2013), 657–679.

[8] Nicholas J. Belkin. 1980. Anomalous States of Knowledge as a Basis for
Information Retrieval. Canadian Journal of Inf. Science 5, 1 (1980), 133–143.

[9] Janek Bevendorff, Benno Stein, Matthias Hagen, and Martin Potthast. 2018.
Elastic ChatNoir: Search Engine for the ClueWeb and the Common Crawl. In
Advances in Information Retrieval. 40th European Conference on IR Research (ECIR
2018) (Lecture Notes in Computer Science), Leif Azzopardi, Allan Hanbury,
Gabriella Pasi, and Benjamin Piwowarski (Eds.). Springer.

[10] Joanna Asia Biega, Rishiraj Saha Roy, and Gerhard Weikum. 2017. Privacy
through Solidarity: A User-Utility-Preserving Framework to Counter Profiling.
In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Shinjuku, Tokyo, Japan, Noriko Kando,
Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White (Eds.).
ACM, 675–684.

[11] Gordon V. Cormack, Mark D. Smucker, and Charles L. A. Clarke. 2011. Efficient
and Effective Spam Filtering and Re-Ranking for Large Web Datasets. Inf. Retr.
14, 5 (2011), 441–465.

[12] J. Shane Culpepper, Fernando Diaz, and Mark D. Smucker. 2018. Research
Frontiers in Information Retrieval: Report from the Third Strategic Workshop on
Information Retrieval in Lorne (SWIRL 2018). SIGIR Forum 52, 1 (2018), 34–90.

[13] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The
Second-Generation Onion Router. In Proceedings of the 13th USENIX Security
Symposium, San Diego, CA, USA, Matt Blaze (Ed.). USENIX, 303–320.

[14] Josep Domingo-Ferrer, Agusti Solanas, and Jordi Castellà-Roca. 2009.
H(K)-Private Information Retrieval From Privacy-Uncooperative Queryable
Databases. Online Inf. Rev. 33, 4 (2009), 720–744.

[15] Khaled M. Elbassioni, Matthias Hagen, and Imran Rauf. 2014. A Lower Bound
for the HBC Transversal Hypergraph Generation. Fundam. Informaticae 130, 4
(2014), 409–414.

[16] Norbert Fuhr. 2017. Some Common Mistakes in IR Evaluation, and How They
Can Be Avoided. SIGIR Forum 51, 3 (2017), 32–41.

[17] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. 1999. Onion
Routing. Commun. ACM 42, 2 (1999), 39–41.

[18] Tim Gollub, Matthias Hagen, Maximilian Michel, and Benno Stein. 2013. From
Keywords to Keyqueries: Content Descriptors for the Web. In The 36th
International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR ’13, Dublin, Ireland, Gareth J. F. Jones, Paraic Sheridan, Diane
Kelly, Maarten de Rijke, and Tetsuya Sakai (Eds.). ACM, 981–984.

[19] Matthias Hagen, Anna Beyer, Tim Gollub, Kristof Komlossy, and Benno Stein.
2016. Supporting Scholarly Search with Keyqueries. In Advances in Information
Retrieval. 38th European Conference on IR Research (ECIR 2016) (Lecture Notes in
Computer Science, Vol. 9626), Nicola Ferro, Fabio Crestani, Marie-Francine Moens,
Josiane Mothe, Fabrizio Silvestri, Giorgio Maria Di Nunzio, Claudia Hauff, and
Gianmaria Silvello (Eds.). Springer, 507–520.

[20] Céline Hébert, Alain Bretto, and Bruno Crémilleux. 2007. A Data Mining
Formalization to Improve Hypergraph Minimal Transversal Computation.
Fundam. Informaticae 80, 4 (2007), 415–433.

[21] Yuan Hong, Xiaoyun He, Jaideep Vaidya, Nabil R. Adam, and Vijayalakshmi
Atluri. 2009. Effective Anonymization of Query Logs. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management, CIKM 2009, Hong

Kong, China, David Wai-Lok Cheung, Il-Yeol Song, Wesley W. Chu, Xiaohua Hu,
and Jimmy J. Lin (Eds.). ACM, 1465–1468.

[22] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-Based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (2002), 422–446.

[23] Thorsten Joachims and Filip Radlinski. 2007. Search Engines that Learn from
Implicit Feedback. Computer 40, 8 (2007), 34–40.

[24] Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. 2008. Vanity Fair:
Privacy in Querylog Bundles. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM 2008, Napa Valley, California,
USA. 853–862.

[25] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. 2010. Boilerplate
Detection Using Shallow Text Features. In Proceedings of the Third International
Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY, USA,
Brian D. Davison, Torsten Suel, Nick Craswell, and Bing Liu (Eds.). ACM,
441–450.

[26] Ravi Kumar, Jasmine Novak, Bo Pang, and Andrew Tomkins. 2007. On
Anonymizing Query Logs via Token-Based Hashing. In Proceedings of the 16th
International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada.
629–638.

[27] Jimmy Lin. 2018. The Neural Hype and Comparisons Against Weak Baselines.
SIGIR Forum 52, 2 (2018), 40–51.

[28] Tie-Yan Liu. 2011. Learning to Rank for Information Retrieval. Springer.
[29] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun.

ACM 38, 11 (1995), 39–41.
[30] Mummoorthy Murugesan and Chris Clifton. 2009. Providing Privacy through

Plausibly Deniable Search. In Proceedings of the SIAM International Conference on
Data Mining, SDM 2009, Sparks, Nevada, USA. 768–779.

[31] Sai Teja Peddinti and Nitesh Saxena. 2010. On the Privacy of Web Search Based
Query Obfuscation: A Case Study of TrackMeNot. In Privacy Enhancing
Technologies, 10th International Symposium, PETS 2010, Berlin, Germany,
Mikhail J. Atallah and Nicholas J. Hopper (Eds.), Vol. 6205. Springer, 19–37.

[32] Sai Teja Peddinti and Nitesh Saxena. 2014. Web Search Query Privacy:
Evaluating Query Obfuscation and Anonymizing Networks. J. Comput. Secur. 22,
1 (2014), 155–199.

[33] Albin Petit, Thomas Cerqueus, Sonia Ben Mokhtar, Lionel Brunie, and Harald
Kosch. 2015. PEAS: Private, Efficient and Accurate Web Search. In 2015 IEEE
TrustCom/BigDataSE/ISPA, Helsinki, Finland, Volume 1. IEEE, 571–580.

[34] Felipe Saint-Jean, Aaron Johnson, Dan Boneh, and Joan Feigenbaum. 2007.
Private Web Search. In Proceedings of the 2007 ACM Workshop on Privacy in the
Electronic Society, WPES 2007, Alexandria, VA, USA. 84–90.

[35] Umesh Shankar and Chris Karlof. 2006. Doppelganger: Better Browser Privacy
Without the Bother. In Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November
3, 2006, Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati
(Eds.). ACM, 154–167.

[36] Michael Strube and Simone Paolo Ponzetto. 2006. WikiRelate! Computing
Semantic Relatedness Using Wikipedia. In Proceedings of the 21th Conference on
Artificial Intelligence, Boston, Massachusetts, USA. AAAI Press, 1419–1424.

[37] Kazunari Sugiyama, Kenji Hatano, and Masatoshi Yoshikawa. 2004. Adaptive
Web Search Based on User Profile Constructed Without Any Effort From Users.
In Proceedings of the 13th international conference on World Wide Web, WWW
2004, New York, NY, USA, Stuart I. Feldman, Mike Uretsky, Marc Najork, and
Craig E. Wills (Eds.). ACM, 675–684.

[38] Egidio L. Terra and Charles L. A. Clarke. 2003. Frequency Estimates for
Statistical Word Similarity Measures. In Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics,
HLT-NAACL 2003, Edmonton, Canada, Marti A. Hearst and Mari Ostendorf (Eds.).
The Association for Computational Linguistics.

[39] Vincent Toubiana, Lakshminarayanan Subramanian, and Helen Nissenbaum.
2011. TrackMeNot: Enhancing the Privacy of Web Search. CoRR abs/1109.4677
(2011).

[40] Peter Willett. 2006. The Porter Stemming Algorithm: Then and Now. Program
40, 3 (2006), 219–223.

[41] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the Use of
Lucene for Information Retrieval Research. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Shinjuku, Tokyo, Japan, Noriko Kando, Tetsuya Sakai, Hideo Joho,
Hang Li, Arjen P. de Vries, and Ryen W. White (Eds.). ACM, 1253–1256.

[42] Puxuan Yu, Wasi Uddin Ahmad, and Hongning Wang. 2018. Hide-n-Seek: An
Intent-Aware Privacy Protection Plugin for Personalized Web Search. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval, SIGIR 2018, Ann Arbor, MI, USA, Kevyn Collins-Thompson, Qiaozhu
Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz (Eds.). ACM, 1333–1336.

[43] Sicong Zhang, Grace Hui Yang, and Lisa Singh. 2016. Anonymizing Query Logs
by Differential Privacy. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval, SIGIR 2016, Pisa,
Italy, Raffaele Perego, Fabrizio Sebastiani, Javed A. Aslam, Ian Ruthven, and
Justin Zobel (Eds.). ACM, 753–756.

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Exhaustive Query Candidate Generation
	3.2 Scoring Query Candidates
	3.3 Keyquery-Based Candidate Generation

	4 Evaluation
	4.1 Experimental Design
	4.2 Experimental Results

	5 Conclusion and Future Work
	References

