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Abstract Document clustering offers the potential of supporting users in interactive

retrieval, especially when users have problems in specifying their information need

precisely. In this paper, we present a theoretic foundation for optimum document clus-

tering. Key idea is to base cluster analysis and evalutation on a set of queries, by

defining documents as being similar if they are relevant to the same queries. Three

components are essential within our optimum clustering framework, OCF: (1) a set of

queries, (2) a probabilistic retrieval method, and (3) a document similarity metric. After

introducing an appropriate validity measure, we define optimum clustering with respect

to the estimates of the relevance probability for the query-document pairs under con-

sideration. Moreover, we show that well-known clustering methods are implicitly based

on the three components, but that they use heuristic design decisions for some of them.

We argue that with our framework more targeted research for developing better docu-

ment clustering methods becomes possible. Experimental results demonstrate the

potential of our considerations.
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1 Introduction

The vast amount of research on IR methods deals with ad-hoc retrieval. However, from a

user-oriented perspective, this is only one of several methods of information access. In

Cool and Belkin (2002) a faceted classification of information seeking strategies is pre-

sented, pointing out that retrieval is only possible if (1) the access mode is specification and

(2) the access method is searching (i.e. the IR system is able to process the user’s speci-

fication). In many cases, users have problems in specifying their information need, thus the

appropriate access mode will be recognition. Document clustering is a means for sup-

porting users in these situations (Käki 2005), since the user only has to recognize the

cluster that fits best to her current information need. Thus, clustering can be helpful at all

stages of a search (i.e. collection clustering as well as result clustering), offering the user

the possibility to choose from a number of clusters instead of formulating a query.

In contrast to document classification, clustering also has the potential of offering

multiple alternative clusterings at a time [similar to faceted search, see e.g. Hearst et al.

(2002), Hearst and Stoica (2009), Yee et al. (2003)]. For example, when searching for

papers on document clustering, some users might be interested in the clustering methods

themselves, others might be looking at the document representation used, and some might

want to know about the type of documents on which the methods have been tested.

In this paper, we describe a model that provides not only a theoretical basis for

improving current clustering methods, but also defines a framework for extensions like e.g.

multiple clusterings.

The Probability Ranking Principle (PRP) (Robertson 1977) forms the theoretic foun-

dation for probabilistic retrieval. Before the formulation of the PRP, the development of

new retrieval models was a purely heuristic task: researchers proposed a mathematical

model [like e.g. vector space Salton (1971) or fuzzy logic Radecki (1977)] and combined it

with varying amounts of heuristics, in order to arrive at a retrieval model. The quality of

this model could be verified only empirically by performing retrieval experiments with the

few test collections available. If the experiments showed good performance, the model was

deemed to be reasonable. With the PRP however, there suddenly was a theoretic justifi-

cation for a certain type of models, stating that probabilistic retrieval models give optimum

performance when results are ranked by decreasing probability of relevance. So good

retrieval quality for probabilistic models is not a mere coincidence like with non-proba-

bilistic ones—there is a theoretic proof that these models allow for optimum retrieval

quality. However, as the PRP only provides a framework, there still remained the task of

formulating actual models (based on different document and query representations plus

using additional assumptions about the (in)dependence of certain types of events). In fact,

it took almost 15 years until there were probabilistic models which outperformed the non-

probabilistic ones in experimental evaluations (Fuhr and Buckley 1990; Salton and

Buckley 1988).

Looking at the field of document clustering, we are still in the pre-PRP era: although

there is a vast amount of knowledge about the properties of various clustering methods,

document clustering still is mainly based on heuristics with regard to the choice of doc-

ument representation and similarity function. The quality of these choices can only be

evaluated experimentally. There is no theoretic foundation which links the design of a

document clustering method to the quality of its outcome.

In this paper we present a theoretic model which solves this problem: Similar to the

formulation of the PRP, we will show how document representation and similarity function

can be linked to the expected quality of the resulting clustering, thus providing a
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framework for optimum clustering. The development of actual clustering methods fol-

lowing this framework is not a subject of this paper—although we provide some experi-

mental evidence indicating the validity of our approach.

The starting point for the development of our framework is the cluster hypothesis.

According to it, cluster analysis could be used to support the identification of relevant

documents given a request: Similar documents tend to be relevant to the same information

need (van Rijsbergen 1979). However, evaluations of the cluster hypothesis gave incon-

clusive results (Voorhees 1985). Instead, Hearst and Pedersen propose to use cluster

analysis as a post-processing step on the set of retrieved documents. They argue that,

especially for high dimensional data, various aspects of the data could serve as a basis for

similarity assessment (Hearst and Pedersen 1996). Which of these aspects are suitable to

distinguish between relevant and irrelevant documents depends on the actual queries, and

thus the (pre-) existence of a universally meaningful (=without considering knowledge

about the information need) clustering cannot be expected. On the other hand, this argu-

ment also supports the idea of multiple alternative clusterings mentioned above.

In this work, we reverse the cluster hypothesis to motivate the introduction of a query

set in combination with relevance assessments to improve the clustering of documents:

Documents relevant to the same queries should occur in the same cluster. For achieving

this, we redefine the concept of document similarity: Two documents are similar if they are

relevant to the same queries. Thus, the original cluster hypothesis becomes a kind of

tautology, since document similarity is no longer a property of its own, but depends on

relevance. Moreover, by considering relevance, clustering is able to address the pragmatic

level of information access, whereas the traditional view of document similarity is more at

the semantic level.

Since we usually won’t have explicit relevance information, we regard the probability

of relevance instead. For supporting interactive information access, in the ideal case, the

query set should contain an element that fits to the user’s current information need, and the

corresponding relevant documents should be clustered together. In fact, result clustering

can be interpreted along these lines, where the query set consists of all possible refinements

of the original query.

Looking at the standard approach to document clustering, documents are represented as

bags of words (BOW). In the spirit of our idea, this approach uses the collection vocab-

ulary as single term queries; thus, two documents are considered similar if they share a

majority of words. This interpretation brings forth that the BOW method describes one

arbitrary way to construct a query set and that different approaches stand to reason.

Referring to the observations of Hearst and Pederson we believe that cluster analysis could

be improved by applying a target-oriented set of queries (e.g. by following the idea of

faceted search as mentioned above). Especially, any domain knowledge should be incor-

porated into the query set. Depending on the way domain knowledge is captured, different

document models become related to our work (see Sect. 2).

The introduction of a query set tackles the clustering process at different stages. We

therefore summarize our approach as the Optimum Clustering Framework (OCF—see

Fig. 1). As will be discussed in greater detail in Sects. 3 and 4, the term optimum clustering
refers to a clustering that satisfies the (reversed) cluster hypothesis best. To be able to

award this optimum property to a clustering, a validity metric based on relevance

assessments is presented. Section 4 also describes how a query set Q could be opera-

tionalized to compute similarity scores between pairs of documents: Documents are rep-

resented through their probabilities of relevance estimated by a retrieval model for the

query set Q. Similarity is then computed based on these representations, i.e., documents are
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not compared directly to each other but via their relevance to Q. In Sect. 5, a discussion on

concrete query sets and their close relation to existing approaches is brought up. Section 6

deals with fusion principles that are tailored to the metrics of the OCF. To illustrate and

substantiate the applicability of our framework, the design and the results of some

experiments are presented in Sect. 7.

The major contribution of this paper is the development of a solid theoretical framework

for future research on document clustering.

2 Related work

Document clustering has a long history of research, see e.g. El-Hamdouchi and Willett

(1989), van Rijsbergen (1979). The decisive point of our work is the introduction of

relevance into the clustering process and indeed, early papers (Ivie 1966; Jackson 1970)

aimed at a closer connection between document similarity and relevance. But this line of

research has not been continued. Robertson (1977) even stated that the cluster hypothesis

and the PRP are somewhat in contrast, since the former cannot be incorporated directly for

computing the document-wise probabilities of relevance. However, as indicated above, our

approach takes the opposite direction, using probabilities of relevance for generating

clusterings.

More recent research has addressed the three major steps of document clustering:

document representation (Ji and Xu 2006), similarity computation (Li et al. 2007; Xu et al.

2003) and fusion (Cutting et al. 1992; Ke et al. 2009). On the other hand, there has been an

increasing number of applications of document clustering for various purposes. Besides the

‘classic’ approach of collection clustering—be it for supporting browsing (especially for

topic detection and tracking Allan et al. (1998)) or for cluster-based retrieval (Liu and

Croft 2004; Voorhees 1985), the focus has been mainly on result clustering, where the

documents of the result set are grouped in order to structure the output (Leuski 2001). In

addition, these clusters can also be ranked (Kurland and Domshlak 2008; Kurland and Lee

2006; Liu et al. 2008; Tombros et al. 2002). Other researchers have used result clustering

for improving the ranked retrieval result, e.g. via cluster-based smoothing of documents

(Diaz 2005; Liu and Croft 2004) or cluster-based resampling for pseudo-relevance feed-

back (Kurland 2008; Lee et al. 2008).

In contrast to the vast amount of literature of document clustering methods, there are

only a few user-oriented evaluations in this area. Some empirical user studies have shown

(1) Query set Q

Clustering for D
Relevance-based

representation of some
d∈D with respect to Q

(2) Retrieval model (3) Similarity metric

Documents D
(vector space

representation)

OCF
Generation of a clustering (fusioning) Internal evaluation of

Same colors
corresponds to
high similarity

eF(D, Q, )

Expected
F-measure

Fig. 1 Illustration of the optimum clustering framework, OCF, here used as internal evaluation criterion to
assess a given clustering C. Salient property of OCF is an information-need-driven computation of document
similarities: based on a query set Q relevance-based representations of the documents D are computed, and
from the correlation of the resulting similarity graph and C the so-called ‘‘expected F-measure’’ is derived

Inf Retrieval

123



that users prefer structured presentations of result sets over list-based ones (Wu et al. 2001)

and help them in retrieving relevant documents. Käki (2005) found that result structuring

supports vague information needs by making it possible for the user to use less precise

queries and by forgiving mistakes in query formulation. The evaluations in (Hearst and

Pedersen 1996; Zamir and Etzioni 1999) showed that a topical structuring of the retrieval

result set helps the user in getting an overview and understanding the content of the result

set. The structuring also supports users in locating relevant documents more easily (Zamir

and Etzioni 1999), especially when similar results from different locations are clustered

within the ranked result list (Käki 2005).

As mentioned in the opening section of this paper, the assessment of pairwise document

similarities in the OCF also offers an information retrieval perspective to classify existing

research. Dependent on how the query set is generated, the OCF evolves into pre-described

approaches. To clarify this fact, we distinguish three paradigms of the query generation

process: local, global, and extern.

1. Under the local paradigm the query set is generated by extracting words or phrases

from each document in the collection independently. To assess the relevance of a

document wrt. a query, traditional retrieval models like the vector space model, BM25

or language models are used. This way, the clustering process gets related to clustering

under the bag-of-words model or keyword based clustering (Kang 2003; Li et al.

2008).

2. Under the global paradigm queries are generated by considering global properties of

the document set. Global properties may be topical or structural. Approaches to

acquire topical queries and to assess their relevance wrt. a document include pLSI

(Hofmann 2001) or LDA (Blei et al. 2003). Using structural queries, the OCF goes in

line with work done in genre- or XML-clustering (Stein and Meyer zu 2008;

Yongming et al. 2008).

3. Under the external paradigm query generation is based on any source of external

knowledge. This may be in forms of manually created relevance judgments, user

feedback, a foreign document collection like under the ESA (explicit semantic

analysis) model (Gabrilovich and Markovitch 2007), or even by operationalizing

existing clusterings as done by semi-supervised clustering methods (Daumé and Marcu

2005).

Note that, traditionally, most of the clustering approaches follow the local paradigm.

The Optimum Clustering Framework can be applied under all paradigms, depending on the

knowledge sources used to generate the query set Q.

In the next two sections, the idea of introducing a query set into the clustering process is

formalized to an external and an internal validity measure. An illustration of how these

measures are applied in a cluster analysis is given in Fig. 1. Although our external measure

relies on relevance judgments rather than on a reference classification, it is closely related

to existing validity measures like the F-Measure (van Rijsbergen 1979, chap. 7) and the

BCubed metric (Bagga and Baldwin 1998), which also consider a measure for precision

and recall.

3 Cluster validity under the OCF

Although there is a broad variety of cluster validity metrics, none of them is suited for our

purpose: Whereas all popular metrics for external evaluation compare a clustering with a
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given document classification, we want to perform an evaluation with respect to a set of

queries with relevance judgments—which is a generalization, since categories (and clas-

sification hierarchies as well) can be regarded as a special case of queries. In order to define

optimum clustering and to be able to develop corresponding clustering methods, we need a

metric satisfying the following two requirements:

1. The metric should be based on a given set of queries with complete relevance

information.

2. It should be possible to compute expectations of this metric based on probabilistic

retrieval models.

To derive our metric, some formal definitions are needed. Let D ¼ fd1; . . .; dNg denote

the set of documents to be clustered with respect to the query set Q ¼ fq1; . . .; qKg, where

R � Q� D denotes the set of relevant query-document pairs.

Definition 1 For a document collection D; uC : D! IN is a clustering function iff there

exists some M such that uC is a surjective mapping into the interval [1, M]. Then we call

the partitioning generated by uC a clustering C ¼ fC1; . . .;CMg with Ci � D for

i ¼ 1; . . .;M. Furthermore, we write x¿Cy whenever uCðxÞ ¼ uCðyÞ, and x¿Cy otherwise.

Definition 2 Two clusterings C and C0 are equivalent iff 8ðx; yÞ 2 D� D :
x�Cy$ x�C0y. Let DR ¼ fx 2 Dj9q 2 Q; 9y 2 Dðx 6¼ y ^ ðq; xÞ 2 R ^ ðq; yÞ 2 RÞg
denote the set of paired relevant documents. Then two clusterings C and C0 are relevance-
equivalent iff 8ðx; yÞ 2 DR � DR : x�Cy$ x� C0y.

Furthermore, let ci = |Ci| denote the size of cluster Ci, and let rik ¼ rðCi; qkÞ ¼ jfdm 2
Cijðqk; dmÞ 2 Rgj denote the number of relevant documents in Ci wrt. qk.

Now we want to define a metric that reflects the cluster hypothesis. Jardine and van

Rijsbergen (1971) already described a method for testing the clustering hypothesis by

comparing document similarities of relevant-relevant vs. relevant-irrelevant document

pairs. Besides reflecting the preferences of the cluster hypothesis, our metric also should

allow for easy computation of expectations, so that the clustering process is able to target at

optimum performance (like with the PRP mentioned in the beginning, enabling probabi-

listic retrieval methods to yield optimum retrieval quality).

The basic idea of our metric is, for each given query, to count the pairs of relevant

documents occurring in the same cluster, and divide it by the total number of pairs in the

cluster. Since we are focusing on pairs of relevant documents, unary clusters always get a

value of 0—even if they contain the only relevant document of a query. So we define our

new measure pairwise precision Pp as the weighted average over all clusters:

PpðD;Q;R; CÞ ¼
1

jDj
X

Ci2C
ci [ 1

ci

X

qk2Q

rikðrik � 1Þ
ciðci � 1Þ ð1Þ

As a simple example, assume that we have a disjoint classification with two classes a
and b, and the documents are partitioned in three clusters: (aab|bb|aa) (throughout this

paper, we use this simplified notation for the case of a classification with disjoint classes as

query set, where we denote only the classes of documents, and separate clusters by ‘|’).

Then we would have Pp ¼ 1
7
ð3ð1

3
þ 0Þ þ 2ð0þ 1Þ þ 2ð1þ 0ÞÞ ¼ 5

7
. Note that we do not

normalize by the number of queries—which is an arbitrary choice: This way, a perfect

clustering for a disjoint classification (with DR = D) will reach a Pp value of 1. For an
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arbitrary query set, however, we might also get values greater than 1, or the maximum

value may be smaller than 1.

Like in retrieval, we need a second measure for considering all aspects of quality, which

we call analogously pairwise recall Rp. For that, let gk ¼ gðqkÞ ¼ jfd 2 Djðqk; dÞ 2 Rgj
denote the total number of relevant documents for qk. Then we define

RpðD;Q;R; CÞ ¼
P

qk2Q

P
Ci2C rikðrik � 1Þ

P
qk2Q
gk [ 1

gkðgk � 1Þ ð2Þ

For our three example clusters (aab|bb|aa) from above, the clustering has produced four

a pairs (out of twelve) and two b pairs (out of six), thus yielding Rp ¼ 4þ2
12þ6
¼ 1

3
.

Equation (2) computes the so-called micro average by summing over all numerator and

denominator values first, and then forming the quotient. This has the advantage that one

can compute unbiased estimation values (by ignoring the denominator which is constant

for a set of queries). Alternatively, one could also regard the macro average (arithmetic

mean) over all queries with more than one relevant answer—but this solution would only

allow for biased estimates.

In the following, we also regard the pairwise F-measure Fp which computes the har-

monic mean of Pp and Rp:

FpðD;Q;R; CÞ ¼
2

1
PpðD;Q;R;CÞ þ

1
RpðD;Q;R;CÞ

ð3Þ

The metric proposed here is similar to other pairwise measures, especially the Folkes

and Mallows FM metric [see e.g. Amigo et al. (2009)] in that both approaches compute

recall and precision wrt. item pairs. But, the FM measure computes the geometric mean

of these, whereas we keep the two metrics separate, and prefer the F measure for

combining them for the reasons described in (van Rijsbergen 1979, chap. 7). The BCubed

metric (Bagga and Baldwin 1998) also computes recall and precision, but averages on a

per item basis. Furthermore, both FM and BCubed have been defined for disjoint cate-

gories only. The Rand index (Rand 1971) is a single measure regarding object pairs.

However, all these metrics suffer from the problem that a pair of irrelevant documents

counts as much as a pair of relevant ones—which contradicts our standpoint. Second,

computation of unbiased expectations is difficult to impossible in most cases. Finally,

having two metrics instead of a single one gives more flexibility wrt. user preferences,

like in ad-hoc retrieval.

We point out that the Fp measure possesses properties desirable for cluster metrics in

general. In the ‘‘Appendix’’, we show that the Fp measure satisfies the four axioms of

Ackerman & Ben-David, which are intended to capture the essence of reasonable clus-

tering quality measures (Ackerman and Ben-David 2008). The development of these

axioms is inspired by Kleinberg’s three axioms for clustering functions (Kleinberg 2002),

which formalize a set of properties that appear plausible at first sight, but which are

inconsistent: Kleinberg’s ‘impossibility theorem for clustering’ (Kleinberg 2002) states

that no clustering function (=fusion principle) can exist that fulfills all axions at the same

time. However, in Zadeh and Ben-David (2009) a different variant of Kleinberg’s axioms

is suggested, proving that single-link is the only clustering method satisfying their set of

axioms. Altogether, we consider the work of (Ackerman and Ben-David 2008) relevant for

us: it focuses on clustering quality measures (in the authors’ sense synonymous with

internal validity measure), this way asking for what an optimum clustering constitutes, and
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not how to construct it. Finally, a more descriptive set of constraints for clustering metrics

is proposed in Amigo et al. (2009), which we also discuss in the ‘‘Appendix’’.

4 From perfect to optimum clustering

Given the two measures as described above, we can now define perfect and optimum

clustering. We chose the terminology analogously to classic retrieval: In perfect retrieval,
all relevant documents are ranked ahead of the first non-relevant one. However, since a real

IR system has only limited knowledge about information needs and the meaning of doc-

uments, it operates on representations of these objects, and can only achieve optimum
retrieval with regard to the representations.

In the following, we first define the perfect variant, and then introduce optimum clus-

tering. For this discussion, we focus on classes of relevance-equivalent clusterings, since

the distribution of the documents from D - DR will not affect the values of Pp and Rp, as

long as these documents are kept separate from those in DR. Below, we shortly talk about

classes of clusterings when we are referring to the equivalence classes wrt. relevance

equivalence.

Definition 3 For a document collection D, a set of queries Q and a corresponding

relevance relation R � Q� D; C is a perfect clustering iff there exists no clustering C0 of

D with PpðD;Q;R; CÞ\PpðD;Q;R; C0Þ ^ RpðD;Q;R; CÞ�RpðD;Q;R; C0Þ or PpðD;Q;
R; CÞ�PpðD;Q;R; C0Þ ^ RpðD;Q;R; CÞ\RpðD;Q;R; C0Þ.

Our definition of perfect clustering is a strong Pareto optimum see e.g. Fudenberg and

Tirole (1983). As for Pareto optima in general, there usually will be more than one perfect

clustering for a given triple ðD;Q;RÞ: The case of a disjoint classification is an exception,

as well as any triple where no document is relevant to more than one query.

As a simple example, assume that we have five documents and two queries where

d1, d2, d3 are relevant for q1, and d3, d4, d5 are relevant for q2. Here we get the highest

precision (Pp = 1) if we cluster either the first three or the last three documents in one

cluster and the other two in another cluster, along with a recall of Rp ¼ 6þ2
6þ6
¼ 2

3
: Thus, even

for a single Pareto optimum (Rp, Pp), there may be more than one corresponding clustering

(which is good news, increasing the chances of a clustering algorithm of finding at least

one of these). The other Pareto optimum in this example results from putting all documents

in one cluster, yielding the maximum recall (Rp = 1), but a precision of Pp = 0.6, only.

Unfortunately, the set of perfect clusterings is not even guaranteed to form a cluster

hierarchy, as can be easily seen from the following example: Let there be 4 documents

d1,…,d4 and 4 queries a, b, c, d, where the documents are relevant to the following que-

ries: d1 : {a, c}, d2 : {a, b}, d3 : {b, c, d}, d4 : {d}. Now we can either cluster

C ¼ ffd1; d2; d3g; fd4gg or C0 ¼ ffd1; d2g; fd3; d4gg: Then we have PpðCÞ ¼ 3
4

and

RpðCÞ ¼ 3
4

vs. PpðC0Þ ¼ 1 and RpðC0Þ ¼ 1
2

(forming a single cluster would yield Pp ¼ 2
3

only). Thus, in general, the set of perfect clusterings cannot be generated by a hierarchic

clustering algorithm. Even with complete knowledge of ðD;Q;RÞ; any hierarchic method

is bound to miss some of the Pareto optima.

Now we turn to optimum retrieval, which we base on expected values of pairwise recall

and precision. Thus, we switch from measures for external evaluation to internal ones. For

that, we assume that we have a retrieval method which is able to estimate the probability of
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relevance P(rel|q, d) of a given query-document pair (q, d). Then, for each document pair,

we can estimate the probability that both documents are relevant, by assuming that the

probabilities of relevance of the two documents are independent. This seems to be counter-

intuitive in the view of classical clustering approaches, where the relevance probabilities of

two similar documents cannot be regarded as being independent. However, in our

approach, documents are not similar per se, similarity is defined only on top of their

retrieval scores for the given query set, as we will see below. Thus, there is no contra-

diction to the independence assumption.

From the probabilities of two documents being both relevant, we can sum up over all

document pairs in order to get an unbiased estimate of the number of relevant document

pairs in a cluster (note that estimating this value from the expected number of relevant

documents E(rik) would result in a biased estimate). In order to simplify the following

definitions, we introduce the expected cluster precision (ecp). First, we define restricted
ecp ~rðCÞ for clusters C with at least two elements:

~rðCÞ ¼ 1

cðc� 1Þ
X

qk2Q

X

ðdl;dmÞ2C�C
dl 6¼dm

Pðreljqk; dlÞPðreljqk; dmÞ

¼ 1

cðc� 1Þ
X

ðdl;dmÞ2C�C
dl 6¼dm

X

qk2Q

Pðreljqk; dlÞPðreljqk; dmÞ
ð4Þ

For clusters with only one element, we define an ecp value of 0 (as for Pp). We can now

define ecp for all cluster sizes as rðCÞ ¼ ~rðCÞ, if |C| [ 1, and r(C) = 0, otherwise.

As Eq. (4) shows, we regard each document pair wrt. all queries. Thus, for each

document, we are only interested in its probability estimates for the given query set, and so

we can transform a document into a vector of relevance probabilities s : D! ½0; 1	jQj with

sTðdmÞ ¼ ðPðreljq1; dmÞ;Pðreljq2; dmÞ; . . .;PðreljqjQj; dmÞÞ. With this notation, we can

express the restricted ecp as follows:

~rðCÞ ¼ 1

cðc� 1Þ
X

ðdl;dmÞ2C�C
dl 6¼dm

sTðdlÞ � sðdmÞ ð5Þ

Based on these definitions, we can now estimate the quality of a clustering. Expected

precision can be computed as the weighted average (considering cluster size) of the

clusters’ ecp values:

pðD;Q; CÞ ¼ 1

jDj
X

Ci2C
jCi j[ 1

1

ci � 1

X

ðdl ;dmÞ2Ci�Ci
dl 6¼dm

sTðdlÞ � sðdmÞ ð6Þ

¼ 1

jDj
X

Ci2C
cirðCiÞ ð7Þ

For expected recall, a direct estimation would lead to the problem that we would also

have to estimate the denominator, which would result in a biased estimate of the recall.

However, since the denominator is constant for a given query set, we can ignore this

factor, as we are only interested in comparing the quality of different clusterings for the

same (D, Q) pair. So we omit the denominator and compute an estimate for the

numerator only:
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qðD;Q; CÞ ¼
X

Ci2C

X

ðdl;dmÞ2Ci�Ci
dl 6¼dm

sTðdlÞ � sðdmÞ ð8Þ

¼
X

Ci2C
ciðci � 1ÞrðCiÞ ð9Þ

Based on these definitions, we also define the expected F-measure as the harmonic

mean of p and q:

eFðD;Q; CÞ ¼ 2
1

pðD;Q;CÞ þ 1
qðD;Q;CÞ

ð10Þ

With these metrics, we can now introduce optimum clustering:

Definition 4 For a document collection D, a set of queries Q and a retrieval function

yielding estimates of the probability of relevance P(rel|q, d) for every query-document pair

ðq; dÞ; C is an optimum clustering iff there exists no clustering C0 of D with

pðD;Q; CÞ\pðD;Q; C0Þ ^ qðD;Q; CÞ� qðD;Q; C0Þ or pðD;Q; CÞ�pðD;Q; C0Þ ^ qðD;Q; CÞ
\qðD;Q; C0Þ.

The major difference to the definition of perfect retrieval lies in the replacement of the

actual relevance judgments by the estimations of the probability of relevance.

As with perfect clustering, we are targeting at a set of strong Pareto optima. Due to the

uncertain knowledge, we usually have more optimum than perfect solutions. This is no

surprise, taking into account that we are optimizing wrt. a set of queries: For a single query,

there is only one perfect retrieval result (retrieving all and only relevant documents), but

optimum retrieval can only be performed in form of a ranking. When we are asking for

hard clustering, then it is impossible to find a single optimum solution.

With the above definition, one can compare different cluster distributions of a document

collection, in order to find an optimum clustering. Thus, a brute force clustering algorithm

would work as follows:

1. For a given document collection, a set of queries and a probabilistic retrieval method,

generate all possible clusterings, and compute expected recall and precision for each

clustering.

2. Determine those clusterings fulfilling the condition for optimum clustering.

Of course, due to the exponential number of possible clusterings of a document set, this

approach is not feasible—but see the discussion on existing fusion principles in Sect. 6 and

the experiments in Sect. 7. In the next section, we describe how the components that are

needed for an evaluation of clusterings with the OCF can be designed.

5 Choosing the OCF components

In our view, all document clustering methods rely on three components:

1. a set of queries,

2. a retrieval function, and

3. a document similarity metric.

The standard clustering approach (representing documents as bags of words) uses the

collection vocabulary as single term queries. Other clustering approaches that are based on
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more advanced document representations use the document features in the collection (or a

subset thereof) as queries. In addition, a clustering method defines a weighting function for

each feature in a document, which reflects the importance of the feature wrt. the document.

In our view, this weight represents the retrieval score of the document for a query with the

specific feature. Finally, the document similarity metric employed by most approaches is

the cosine measure or the scalar product.

The OCF approach covers most (if not all) of the existing document clustering methods.

These methods are often defined as heuristics, without a theoretic foundation that links the

choice of the three components to the resulting clustering quality. Given the OCF, we have

a foundation, and thus, a more targeted development towards better clustering methods is

possible. At first glance, the OCF seems to be more complicated than the existing methods,

e.g. by requiring a probabilistic weighting function. On the other hand, the existing

methods can be interpreted as heuristic approximations to our framework, and by referring

to the OCF, we immediately see possibilities for improvements, for example: Are there

better query sets than single terms? Can we replace the tf � idf weighting by a probabilistic

one? In general, one should choose the components in such a way that they fit to the

underlying theoretic model. As we will show below, there is no degree of freedom in the

choice of the similarity metric, and little in the definition of the retrieval function. For

the query set, the OCF poses no restrictions. However, our approach of interpreting the

document features as relevance assessments gives us a strong hint on how to form a query

set: In the ideal case, queries should capture the users’ information needs—then applying

the OCF will cluster relevant documents together. In the following, we discuss each of the

three components in greater detail and demonstrate a number of design options available

for each of them.

Query Set. The main challenge of query set generation is to find queries related to the

users’ current information needs. Ideally, the system would have context information about

the user and her information need, thus being able to generate a context-specific query set,

which would lead to context-specific clustering. As mentioned before, result clustering

[e.g. (Leuski 2001)] can be regarded as an approach along these lines, where the query set

consists of possible refinements of the current query. For collection clustering, three

paradigms for query set generation have been used, as outlined in Sect. 2. Whereas the

local and global methods find a query set by analyzing the given document collection,

external methods focus on the incorporation of domain knowledge or common sense

knowledge.

The simplest local method for query set generation is to use each unigram that occurs in

the document collection as one query. Consequently, a document will be represented by its

relevance wrt. each unigram. This method resembles clustering under the bag-of-words

model. As an alternative local approach, keyphrases can be extracted from the documents

to form a more focused query set. See Sect. 7 for a demonstration of this approach. In our

ongoing research, we also investigate whether stylometric features like readability indexes

or POS-features can contribute to a more sophisticated query set. Besides the standard

term-based models, more advanced topic models operating on transformations of the term

space are also feasible. These methods follow the global paradigm. There is already a range

of clustering methods based on latent variables see e.g. Blei and Lafferty (2007), He et al.

(2001), Hofmann (2001); in terms of our framework, the single dimensions or concepts

resulting from these transformations form query candidates.

The most promising methods for query set generation are those driven by external

resources. An existing approach following the external paradigm is the ESA model. In the

perspective of our framework, ESA uses a set of Wikipedia articles as query set. It is
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noticeable how natural the model evolves from the idea behind the OCF. Besides Wiki-

pedia, there are plenty of other resources that could serve as a basis for external query set

generation: tags of a social tagging system, titles from news portals, or queries from a

query log, to name a few. A crucial point is that external resource should reflect the user’s

raw notions of the document collection. A definite guide is still missing here, but we

believe that the use of external resources is a fruitful field for further research. A maybe

more directed approach in this respect is to engage human reviewers to study parts of the

document collection and to create an initial query set manually. The scalability of this idea

is limited, but the emergence of crowdsourcing platforms like Amazon’s mechanical turk1

show its feasibility.

There also is the potential for using multiple query sets in order to generate multiple

clusterings from which the user can choose—either for the whole collection or context-

dependent as a form of result clustering. In our view, faceted search (Hearst et al. 2002;

Hearst and Stoica 2009; Yee et al. 2003) can be regarded as a set of clusterings along

different dimensions, which are usually defined via formal attributes. We suggest to

generalize this idea towards arbitrary facets. One possible source for defining these facets

is the document structure: emails can be clustered by subject, by sender or by date,

patent documents by claims, previous work or by the description of the innovation;

descriptions in online bookstores can be grouped by editorial reviews, user reviews, or

even book covers. When documents are unstructured, external resources can provide the

necessary information for generating different query sets. By generating multiple clus-

terings, the search interactions are richer, even if no formal criteria for performing

standard faceted search are available, and so interactive retrieval becomes more effective

(Fuhr 2008).

Probabilistic Retrieval Function. The design decisions made to construct the query set

sometimes prescribe a specific retrieval function, as with latent variable models or stylo-

metric features, for example. Often, however, there is a broad variety of retrieval functions

one can choose from, e.g. tf � idf , BM25, or language models. An arising problem is the

estimation of the actual probability of relevance, since most retrieval methods compute a

score that is only rank-equivalent to probabilistic retrieval. In most cases, certain query-

specific constants are ignored within the score computation. However, our framework

heavily relies on the comparison of probabilities of relevance for different queries (e.g. are

the documents {d1, d2} more likely to be relevant to q1 than are {d2, d3} to q2?). Besides

trying to apply the underlying models in such a way that they directly estimate the

probability of relevance, there are also methods for transforming the retrieval score into

such a probability; examples include (Nottelmann and Fuhr 2003) or the recent studies on

score distributions (Arampatzis et al. 2009; Kanoulas et al. 2009).

Document Similarity Metric. Regarding the addends of Eq. (5), the obvious measure for

document similarity is the scalar product of the sðdÞ vectors, which yields the expected

number of queries for which both documents are relevant. In case the s vectors contain

tf � idf weights, we have a standard similarity metric, for which our framework gives a

new interpretation. We like to point out that the relationship between the similarity metric

and the cluster hypothesis has been investigated by previous researchers: whereas (Voo-

rhees 1985) used standard document similarity measures for testing the cluster hypothesis,

(Tombros and van Rijsbergen 2004) and (Smucker and Allan 2009) investigated the idea of

using query-specific similarity metrics by combining the standard document similarity with

1 http://aws.amazon.com/mturk/

Inf Retrieval

123

http://aws.amazon.com/mturk/


query-specific weights. While the latter two papers consider the actual query to a certain

extent, our similarity metric is based on a set of queries.

6 Existing fusion principles in the light of the OCF

Across the broad range of fusion principles that have been developed in the past are those

most amenable to our framework that analyze the cluster quality after each fusion step

(agglomerative methods) or division step (divisive methods). Running such a method

under OCF simply means to employ one or both of the two metrics expected cluster

precision Eq. (5) and expected recall Eq. (8) as quality measure. Under an agglomerative

clustering method the former corresponds to the metric employed in group average clus-

tering (Sneath and Sokal 1973), where also all pairs of the resulting cluster are considered.

Each step of this method results in a cluster with higher (or equal) recall q than the two

clusters being merged. By contrast, expected precision p will decrease (ignoring the unary

clusters with p = 0 here), as can be easily seen from its definition as the average similarity

of the s vectors. Divisive methods, on the other hand, start with a single cluster which has

maximum expected recall, but very low precision. Then they divide clusters in order to

increase precision, but with minimum loss in recall. Among these methods, min-cut

(Nagamochi et al. 1994) comes closest to the OCF: Considering the scalar product of the s

vectors as similarity and thus as edge weight in the similarity graph, the min-cut criterion

corresponds to finding those edges that minimize the reduction in expected recall, as can be

seen from Eq. (8). For breaking ties, the OCF suggests to consider the expected pairwise

precision of the result of the divisive step.

Although we have shown that no hierarchical clustering method is able to find all Pareto

optima, it is an interesting question whether or not at least one optimum is reached. In fact,

we can show that min-cut finds such an optimum: First let us assume, that the similarity

graph is cohesive (if not, min-cut will first divide it into its cohesive subgraphs, thus

increasing precision without reducing recall). Then we have the first optimum with maxi-

mum expected recall. In the next step, min-cut will search for a cut with minimum reduction

of recall. If there is more than one decomposition possibility with the same reduction in

recall, then we should choose the one with the highest expected precision. This way, we will

arrive at the next Pareto optimum with the second highest recall and maximum precision for

this recall point. For the next min-cut step, however, we cannot show the same property,

since a better result might be reached via a suboptimal choice in the first cut step (see e.g. the

example with 4 documents and 4 queries from Sect. 4). This result is theoretically inter-

esting, since there are 2N-1 - 1 nontrivial possibilities for bipartitioning a collection of N
documents, and for some clustering criteria, finding the optimum solution is NP-hard

(Gordon 1996). In contrast, for our criterion, min-cut finds the optimum solution in O(N3)

steps. From a practical point of view, however, this result is of little value, since we usually

want a much larger number of clusters with a significantly higher precision.

For the agglomerative methods, we cannot show that they will find an optimum. This is

due to the definition of pairwise precision, where any singleton cluster has a precision of 0.

Thus, in general, we will need several fusion steps in order to reach the first optimum—and

a greedy strategy will hardly find these steps.

Overall, the choice of the new quality measures pairwise recall and precision seems to

be well justified, since it gives a posteriori nice theoretical foundations of some cluster

similarity metrics and fusion principles, and also highlights their properties wrt. optimum

clustering.
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7 Experimental analysis

The OCF provides a new way to model similarity in text clustering applications. If clus-

tering is understood as a method to group documents according to query relevance,

the OCF explains also at which places domain knowledge should be integrated. What are

the practical impacts, in terms of new clustering technology, that can be expected from the

OCF? In this section, we answer this question and report on appropriate experiments.

Document clustering technology combines the three OCF elements (document repre-

sentation, retrieval function, similarity measure) with a fusion principle. Popular methods

use the bag of words approach in combination with the vector space model or a proba-

bilistic model and cosine similarity as OCF elements. With respect to fusion principles, the

picture is less clear; the iterative principle in the form of k-means is pretty popular, but the

hierarchical or the density-based principle work better in most applications. As mentioned

before, the OCF can be combined with any fusion principle.

In order to demonstrate the validity of the OCF, we compare the OCF quality metric

with existing metrics, both qualitatively and consistently over a relevant application range.

For that we analyze the effectiveness of the expected F-measure when being used as

internal validity measure, i.e., when being used for the discrimination between good and

bad clusterings of a data set. We would like to point out the utmost importance of internal

validity measures, as they finally decide about clustering quality: in practical applications

several alternative clusterings are generated amongst which the best one has to be cho-

sen—without having access to the ground truth (a crucial fact which is often neglected in

experimental analyses).

We devise the experimental setup shown in Table 1, addressing the following issues of

the expected F-measure metric:

1. Robustness with respect to the number of classes and class imbalance.

2. Independence of fusion principles.

3. Independence of high fusion variance.

4. Capturing of distance, shape and density characteristics.

5. Positive correlation with respect to query term expressiveness.

The main results of our analysis are comprised in Table 5. In addition, Table 4 reports

on the clusterability of the test collections against the algorithms k-means, group average,

and random assignment; this information is helpful in answering the issues 2 and 3. We

detail the experimental setup in the following.

Five different subsets of the Reuters news corpus RCV1 are used as test collections

(Lewis et al. 2004). The documents are drawn iid. from up to 12 classes, covering the four

top-level classes of the RCV1 while considering only documents that are labeled with

exactly one class. Tables 2 and 3 describe the collections and the used classes.

Within all experiments, documents are represented under the bag of words model,

applying the BM25 weighting function with the suggested standard parameters2 to com-

pute the weight of each term t for the vector representation of document d:

wðt; dÞ ¼ idfðtÞ � ðk1 þ 1Þ � tf ðt; dÞ
tf ðt; dÞ þ k1 � ð1� bþ b � Ld

Lavg
Þ
;

2 ‘‘Experiments have shown reasonable values are to set k1 (and k3) to a value between 1.2 and 2 and
b = 0.75.’’ Manning et al. (2008)
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where idf(t) denotes the inverse document frequency of term t in the collection, tf(t, d) the

term frequency of term t in document d, Ld the length (number of words) of d, and Lavg the

average length of a document in the collection.

The cluster algorithms k-means (iterative fusion principle) and group average (hierar-

chical fusion principle) apply the cosine similarity to compute the pairwise similarities

between the BM25 document vectors. For both algorithms the true category number is

withhold. For k-means the parameter k is varied between 2 and 41, while for group average

40 clusterings with 2; 4; . . .; 80 clusters are taken as defined by the dendrogram. These

generation strategies account for the different sensitivity of the two fusion principles.

While k-means often leads to very different clusterings when varying k, two consecutive

clusterings of group average differ only by the fusion of two clusters with minimum

distance. Under the random assignment algorithm, 40 clusterings are generated such that in

clustering i (i ¼ 1; . . .; 40), a document is assigned to its correct class with probability 1/i
and with probability 1 - 1/i randomly to one of the other classes (i.e. i = 1 yields a perfect

clustering, while i = 40 results in the worst one). Altogether, 5 � 3 � 40 ¼ 600 clusterings

Table 1 Overview of the experimental design

Variable Variation Effectiveness analysis

Collection Size Tables 2 ? 3

Number of classes

Class distribution

Fusion principle Iterative: k-means Dependency on collection
(F-measure)

Table 4

Hierarchical: group average

Random assignment

Internal validity
measure

Distance: Dunn-Index Dependency on collection
and fusion principle
(correlation coefficient)

Table 5

Shape: silhouette

Graph: expected density

OCF: terms, keywords

Table 2 Statistics of the five test collections (RCV subsets) used within the experiments

Collection Size Number
of classes

Class distribution Classes

rcv-ss1 600 6 uniform C11, E131, GCAT, GSCI, GSPO,
M143

rcv-ss2 6 000 6 uniform %

rcv-ss3 9 000 6 uniform %

rcv-ss4 6 000 6 2 000, 2 9 1 500,
500, 2 9 250

(corresponding to class sequence
above)

rcv-ss5 6 000 12 uniform C11, C23, C311, E71, E131,
GCAT, GCRIM, GSCI, GSPO,
GVIO, M11, M143
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are computed. Table 4 reports the mean and the standard deviation of FðC; C
Þ, the

achieved F-measure values, which are computed under the set-matching paradigm:3

FðC; C
Þ ¼
X

c
j 2C



jc
j j
n

max
ci2C

Fðci; c


j Þ

n o

Here n is the number of documents in the collection, while C and C
 denote the clustering

and the true classification respectively. Fðci; c


j Þ computes the standard F-measure for

cluster ci and true class c
j with equally weighted precision and recall.

From a clustering perspective, i.e., with respect to the effectiveness and its variance, the

results in Table 4 are reasonable and in accordance with the literature (Chim and Deng

2008; Stein et al. 2003). Regarding our experiment design, however, we are not interested

Table 4 External evaluation of fusion principles with respect to their effectiveness of class identification

Fusion principle rcv-ss1 rcv-ss2 rcv-ss3 rcv-ss4 rcv-ss5

F: l r l r l r l r l r

k-means 0.47 0.11 0.54 0.08 0.53 0.08 0.60 0.10 0.36 0.06

Group average 0.60 0.11 0.66 0.10 0.69 0.10 0.52 0.10 0.54 0.15

Random assignment 0.58 0.24 0.60 0.24 0.59 0.24 0.63 0.22 0.55 0.27

The table shows both mean l and standard deviation r of the achieved F-measure values over 40 clustering
runs per each combination of collection and fusion principle

Table 3 Description of the
classes in the five test collections
(RCV subsets)

Class Description Used Parent

CCAT Corporate/Industrial Root

C11 Strategy/Plans *

C23 Research/Development * CCAT

C31 Markets/Marketing

C311 Domestic markets * C31

GCAT Government/Social * Root

GCRIM Crime, law enforcement *

GSCI Science and technology * GCAT

GSPO Sports *

GVIO War, civil war *

ECAT Economics Root

E71 Leading indicators * ECAT

E13 Inflation/Prices

E131 Consumer prices * E13

MCAT Markets Root

M11 Equity markets * MCAT

M14 Commodity markets

M143 Energy markets * M14

3 Under the counting-pairs paradigm the document pairs form the basis for the computation of precision and
recall, entailing a different computation rule for FðC; C
Þ (Amigo et al. 2009).
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in the absolute performance of an algorithm but in whether we are able to spot a clustering

with maximum F-measure within a set of clusterings. I.e., we are looking for an internal

evaluation measure that is able to predict the ranking of the (true) externally computed

evaluation results. In this regard Table 4 ensures that a broad range of clustering situations

is considered.

Table 5 compares the effectiveness of five internal evaluation measures: the well-

accepted Dunn-Index (Bezdek and Pal 1995), which balances between inter- and intra-

cluster distances, the shape-based silhouette coefficient (Rousseeuw 1987), the graph-based

measure expected density (Stein et al. 2003), and two new measures that apply the expected

F-measure derived in our framework, called OCF terms and OCF keywords. The latter two

measures differ in the specificity of the employed query set (explained below). The table

quantifies the correlations between the rankings obtained from the internal measures and the

true rankings, according to the Pearson correlation coefficient. The Dunn-index shows a

consistent characteristic and yields acceptable results for the larger collections; its unsat-

isfying performance under random assignment is rooted in the fact that Dunn focuses on

extremal similarities instead of averaging over all values: a local ‘‘decontamination’’ of an

otherwise homogeneous cluster, which is likely under random assignment, is overrated. By

contrast, the silhouette coefficient yields reasonable values only for clusterings generated by

the random assignment algorithm. Silhouette prefers clusterings with few clusters, and a

deeper analysis of the generated clusterings revealed that the best clusterings of k-means and

group average typically contain many clusters. The expected density outperforms both the

Dunn-index and the silhouette coefficient—a fact which has been reported before, for a

variety of settings. The OCF-based measures perform best, where OCF keywords yields

better values than OCF terms within all except one setting.

Table 5 Evaluation of internal validity measures with respect to their effectiveness of clustering selection

Collection Fusion principle Dunn-
Index q

Silhouette q Expected
density q

OCF
terms q

OCF
keywords q

rcv-ss1 k-means 0.38 0.53 0.65 0.77 0.80

rcv-ss2 0.67 -0.26 0.59 0.67 0.90

rcv-ss3 0.56 -0.31 0.72 0.78 0.93

rcv-ss4 0.61 -0.02 0.63 0.68 0.81

rcv-ss5 0.83 -0.48 0.85 0.88 0.83

rcv-ss1 Group average 0.21 -0.17 0.34 0.41 0.61

rcv-ss2 0.73 -0.61 0.82 0.85 0.89

rcv-ss3 0.79 -0.68 0.84 0.88 0.90

rcv-ss4 0.65 -0.44 0.66 0.70 0.71

rcv-ss5 0.70 -0.97 0.88 0.90 0.98

rcv-ss1 Random assignment 0.55 0.98 0.97 0.97 0.97

rcv-ss2 0.50 0.96 0.97 0.97 0.97

rcv-ss3 0.65 0.96 0.97 0.97 0.97

rcv-ss4 -0.22 0.97 0.97 0.97 0.97

rcv-ss5 0.64 0.98 0.97 0.97 0.97

The table shows the achieved correlation coefficient values; evaluation basis are the 600 clustering
experiments reported in Table 4

Bold figures (per row) indicate the maximum achieved effectiveness for a collection/fusion-principle
combination
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OCF-based measures quantify document similarity indirectly, via a query set Q. In

particular, OCF terms considers all words of a collection’s vocabulary as query set QT,

which hence can be considered as a canonical query set. OCF keywords introduces more

‘‘query semantics’’ by extracting keyphrases from the documents of a collection, each

forming an element of the query set QK. We use the method from Barker & Cornacchia for

this purpose (Barker and Cornacchia 2000): first, by a parts of speech analysis, the doc-

ument is skimmed for base noun phrases. In a second step, scores are assigned to the

extracted phrases based on the noun frequency and the phrase length. Third, single letter

phrases and wholly contained subphrases are removed.

The relevance probability of a query q 2 Q wrt. a document d defines one component

(dimension) in the vector sQðdÞ of relevance probabilities. This relevance probability is

computed according to the BM25 retrieval model. The scalar product of two vectors sQðd1Þ
and sQðd2Þ of relevance probabilities in turn defines the similarity between the two doc-

uments d1 and d2, and is accounted by the expected F-measure for a given clustering C (see

Eqs. 5–10). With regard to the two query sets used, we have |QK| \ |QT|. Our experiments

show that the OCF-based measure benefits from focusing on the smaller keyphrase query

set QK: the similarity graph computed for QK contains less noise and thus allows for a more

stable validation. It may be interesting to learn that if the set QK is also used as vocabulary

for representing the documents D, the quality of the found clusterings does not improve in

terms of the external F-measure (we have repeated all experiments with the respective

setting). I.e., while the OCF-based validity measure benefits from focusing on a small set

of discriminating keyphrases, the clustering algorithms k-means and group average require

a more fine-grained representation of the documents to inform their fusion process.

Altogether, the most important insight relates to the possibility to introduce semantics into

a clustering process, which may relate to user preferences or to task specifics—both can be

expressed in query form. Also note that query sets as they are used within the OCF enable

one to transfer clustering preferences between different document collections.

8 Conclusion and outlook

We have devised a new framework for document clustering (OCF). As pointed out, any

clustering method is based on a set of queries, a retrieval function and a document simi-

larity metric. The document clustering methods developed in the past disregard or

implicitly constrain these three essential components. In contrast, the OCF establishes a

theoretic basis that tells us how we can achieve optimum clustering quality for a given

query set and a probabilistic retrieval function, thus enabling more targeted research for

developing better document clustering methods.

The results of our initial experiments demonstrate the potential of our approach, but are

intended for illustrative purposes in the first place. Altogether, our major contribution is its

well-founded theoretical framework for document clustering, in order to replace the cur-

rently prevailing heuristic methods by more solid approaches, just like the Probability

Ranking Principle for probabilistic retrieval. We do not claim that we have already better

clustering methods—this will be the issue of further research, for which we have laid the

ground here.

The discussion in this paper has focused on hard clustering, and cluster hierarchies have

only been addressed briefly. Extending our framework to soft clustering and/or cluster

hierarchies is also a subject of further research.
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As mentioned in the very beginning, we see clustering methods as an important tool for

interactive information access. However, more user-oriented research is required for

investigating the full potential of this concept.
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Appendix: Properties of the Fp measure

For demonstrating that Fp is a reasonable cluster quality metric, we show that it fulfills

both the clustering metric axioms defined in Ackerman and Ben-David (2008) as well as

the constraints defined in Amigo et al. (2009). For that, let us first define document vectors

denoting their relevance to the elements of the query set:

dT
l :¼ ðdl1 ; . . .; dlK Þ with dli ¼

1; if ðqi; dlÞ 2 R
0; otherwise

�

With this definition, we can rewrite pairwise precision and recall as

PpðD;Q;R; CÞ ¼
1

jDj
X

Ci2C
ci [ 1

1

ci � 1

X

ðdl;dmÞ2Ci�Ci
dl 6¼dm

dT
l � dm ð11Þ

RpðD;Q;R; CÞ ¼

P
Ci2C

P
ðdl;dmÞ2Ci�Ci

dl 6¼dm

dT
l � dm

P
ðdl;dmÞ2D�D

dl 6¼dm

dT
l � dm

ð12Þ

As distance function w, we use the inverse of the scalar product of these document

vectors:

wðdl; dmÞ ¼
1

dT
l � dm

ð13Þ

In the following, we discuss each of Ackerman & Ben-David’s axioms by first quoting

their definition (adapted to our notation), and then demonstrating its validity for the

pairwise F-measure.

Scale Invariance. Let D be a set of document vectors, called domain set in (Ackerman

and Ben-David 2008), and let w be a distance function. A quality measure m satisfies the
scale invariance axiom if mðC;D;wÞ ¼ mðC;D; k � wÞ for all clusterings C of hD;wi and
every positive k.

Due to the nature of OCF a scaling factor k cannot be inserted directly as a parameter

into Fp. To show that we nevertheless can satisfy this axiom we have to generalize the

definition of the document vector components dli to nonbinary, nonnegative relevance

values (e.g. for reflecting degrees of relevance). Furthermore, we have to normalize pre-

cision by a global factor:

P0pðD;Q;R; CÞ ¼
PpP

ðdl;dmÞ2D�D
dl 6¼dm

dT
l � dm

ð14Þ

Then we can rescale distances by a factor of k by multiplying all document vectors by

its square root: d0 ¼
ffiffiffi
k
p

d. It is easy to see that neither Rp nor Pp

0
are affected by rescaling.
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Consistency. A quality measure m satisfies the consistency axiom if for every clustering
C of hD;wi the fact that w0 is a C-consistent variant of w implies mðC;D;w0Þ �mðC;D;wÞ:
A distance function w0 is called a C-consistent variant of w, if w0ðx; yÞ�wðx; yÞ whenever x
and y are in the same cluster in C; and if w(x, y) C w(x, y) otherwise.

In our case, changing the distance between two documents is controlled by either

reducing or increasing the number of queries both documents are relevant for. Obviously, a

query set that leads to decreasing distances of documents that belong to the same cluster or

increasing distances of documents that belong to different clusters can only improve Pp and

Rp, and thus the clustering quality according to Fp.

Richness. A quality measure m satisfies the richness axiom if for every non-trivial
clustering C of D, there exists a distance function w such that C ¼ argmaxC02C
ðmðC0;D;wÞÞ: A clustering of D is called trivial if it consists of either a single cluster or |D|

one-document clusters.

We define a special query qC per cluster C 2 C such that all documents in C are relevant

to qC, while all documents in D n C are irrelevant. If the query set then is defined as

fqC j C 2 Cg, the resulting document vectors entail a distance function w such that

mðC;D;wÞ is maximum.

Isomorphism Invariance. A quality measure m is isomorphism-invariant if mðC;D; dÞ ¼
mðC0;D; dÞ for all clusterings C; C0 of hD; di that are isomorphic. Two clusterings C and C0
are isomorphic if there exists a distance-preserving isomorphism u : D! D such that

x; y 2 C iff x; y 2 C0; for all x; y 2 D; C 2 C and C0 2 C0:
This axiom requires that clustering should be indifferent to the individual identity of the

clustered elements—which holds since our quality metric does not refer to the identity of

documents.

Now we regard the four constraints for cluster metrics as defined in Amigo et al. (2009),

which can be regarded as preferences that should be satisfied by any reasonable cluster

metric. We discuss each of the four constraints by first citing the definition from Amigo

et al. (where the notation is adapted to ours), along with an example, and then testing it on

our pairwise F-measure.

Constraint 1: Cluster Homogeneity. Let D be a set of items belonging to categories
L1; . . .; Ln: Let C1 be a cluster distribution with one cluster C containing items from two
categories Li, Lj. Let C2 be a distribution identical to C1; except for the fact that the cluster
C is split into two clusters containing the items with category Li and the items with
category Lj, respectively. Then an evaluation metric Q must satisfy QðC1Þ\QðC2Þ.
Example: Qðaabbj. . .Þ\Qðaajbbj. . .Þ. In our examples here, we assume that the ‘. . .’ parts

are equal for both distributions.

Obviously, precision increases in this case, while recall remains the same, so this

constraint is fulfilled.

Constraint 2: Cluster Completeness. Let C1 be a distribution such that two clusters
C1,C2 only contain items belonging to the same category L. Let C2 be an identical dis-
tribution, except for the fact that C1 and C2 are merged into a single cluster. Then C2 is a
better distribution: QðC1Þ\QðC2Þ: Example: Qðaajaaj. . .Þ\Qðaaaaj. . .Þ.

Here recall increases, while precision remains the same.

Constraint 3: Rag Bag. Let Cclean be a cluster with n items belonging to the same
category. Let Cnoisy be a cluster merging n items from unary categories (there exists just
one sample for each category). Let C1 be a distribution with a new item from a new
category merged with the highly clean cluster Cclean, and C2 another distribution with this
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new item merged with the highly noisy cluster Cnoisy. Then QðC1Þ\QðC2Þ: Example:

Q(aaaab|cdefg) \ Q(aaaa|bcdefg).

Here precision is increased, while recall remains unchanged.

Constraint 4: Cluster Size vs. Quantity. Let us consider a distribution C containing a
cluster Cl with n ? 1 items (for n [ 2) belonging to the same category L, and n additional
clusters C1. . .Cn; each of them containing two items from the same category L1. . .Ln: If C1

is a new distribution similar to C where each Ci is split in two unary clusters, and C2 is a
distribution similar to C; where Cl is split in one cluster of size n and one cluster of size 1,
then QðC1Þ\QðC2Þ: Example (with n = 3): Q(aaaa|b|b|c|c|d|d) \ Q(aaa|a|bb|cc|dd).

Here we would have PpðC1Þ ¼ 1
3nþ1
ððnþ 1Þ � 1þ n � 2 � 0Þ\PpðC2Þ ¼ 1

3nþ1
ðn � 1þ 1 �

0 þn � 2 � 1Þ. However, recall would decrease:

RpðC1Þ ¼
nðnþ 1Þ

nðnþ 1Þ þ n
[ RpðC2Þ ¼

nðn� 1Þ þ n

nðnþ 1Þ þ n
:

Thus, we have to regard the ratio of the Fp values for this case: FpðC1Þ=FpðC2Þ ¼
ð6n2 þ 13nþ 7Þ=ð12n2 þ 9nÞ. For n [ 1, this ratio is smaller than 1, so we have

FpðC1Þ\FpðC2Þ, as desired.
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