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ABSTRACT

Information retrieval evaluation has to consider the varying “diffi-
culty” between topics. Topic difficulty is often defined in terms of
the aggregated effectiveness of a set of retrieval systems to satisfy a
respective information need. Current approaches to estimate topic
difficulty come with drawbacks such as being incomparable across
different experimental settings. We introduce a new approach to
estimate topic difficulty, which is based on the ratio of systems
that achieve an NDCG score that is better than a baseline formed
as random ranking of the pool of judged documents. We modify
the NDCG measure to explicitly reflect a system’s divergence from
this hypothetical random ranker. In this way we achieve relative
comparability of topic difficulty scores across experimental settings
as well as stability to outlier systems—features lacking in previous
difficulty estimations. We reevaluate the TREC 2012 Web Track’s ad
hoc task to demonstrate the feasibility of our approach in practice.
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1 INTRODUCTION

Information retrieval systems are typically evaluated under the
Cranfield paradigm with the following three components [21]: (1) a
set D of documents; (2) a set T of topics (i.e., information needs),
each comprising a query and a characterization of what constitutes
relevant documents; and (3) relevance judgments for the k top-
ranked results from each system for each topic. An evaluation’s
outcome in this scenario can be seen as a matrix M = S X T with
the set S of participating systems sy, ..., s, that contribute a run
for each topic t1, ..., tm € T. The cell M;; of the matrix then denotes
the effectiveness score of system s; on topic t; under some measure
based on the relevance judgements. The overall effectiveness of a
system is its row’s average score, while a topic’s difficulty is usually
estimated by a column-wise aggregation [11, 16].

Inherently, some topics will be easier for some systems than for
others [7]. While many studies aim at estimating a topic’s/query’s
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difficulty online, with the goal of adapting a system’s retrieval
strategy accordingly (2, 15, 19], estimating a topic’s difficulty offline
is important to analyze retrieval experiments. Damessie et al. [5]
observe that topic difficulty influences annotator agreement, while
Mizzaro and Robertson [11] have shown that a topic’s difficulty
correlates with its ability to predict system effectiveness.
Reviewing the existing aggregation approaches to estimate topic
difficulty, we identify four issues that limit their usefulness (Sec-
tion 2). To overcome these issues, we introduce a new ratio-based
approach using on the widely accepted NDCG measure. We for-
mally prove its shift and scale invariance (Section 3) and then adjust
the measure to incorporate the divergence from the expected per-
formance of the random ranker (Section 4). For illustration, we
reevaluate the TREC 2012 Web Track’s ad hoc task [4] (Section 5).!

2 RELATED WORK

The estimation of topic difficulty revolves around grouping topics
into coarse-grained classes of difficulty, for example, “easy”, “moder-
ate”, and “hard” topics. Following Mothe et al. [13], we distinguish
three major strategies to assign such difficulty classes, namely size-
based, threshold-based, and distribution-based strategies.

For size-based estimations, topics are assigned into difficulty
classes such that all resulting classes are of equal size. For example,
Eguchi et al. [6] decreasingly order topics by median average preci-
sion, and split them into three graded categories, such that category
sizes are equal. This approach is also taken by Carterette et al. [3],
but using average average precision (AAP) instead.? Damessie et al.
[5] choose the two highest and lowest scoring topics by AAP to
designate “easy” and “hard” topics in their experiment.

For threshold-based estimations, fixed difficulty thresholds dis-
criminate difficulty classes. These thresholds are derived from the
specific distribution of scores in an experiment. For a binary clas-
sification, Grivolla et al. [8] set their threshold of difficulty at the
median AAP over all topics (coincidentally rendering their approach
also size-based). Vercoustre et al. [20] set thresholds based on the
mean AAP over all topics, and its standard deviation. Depending
on where the AAP of a topic falls within the overall distribution, it
is classified as one of four graded difficulty classes.

Instead of deriving thresholds, score distributions can be taken
into account directly: Shtok et al. [19] and Pérez-Iglesias and Araujo
[14] measure the standard deviation of retrieval scores in a run
under the hypothesis that the score distributions for “easy” and
“hard” topics differ. Similarly, Aslam and Pavlu [1] characterize
difficulty as the Jensen-Shannon divergence between runs, with the
expectation that the runs’ score distributions of systems are more
similar for “easy” topics than for “hard” ones.
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The existing approaches suffer from one or more of the follow-
ing four shortcomings: (1) Local consistency. When assigning topic
difficulty classes based on score distributions of a given experiment,
a different experiment might result in a different classification. This
issue is inherent to offline difficulty estimation, as it depends on
the system set, yet can be mitigated using a sensible approach to
class assignment. (2) Topic set stability. The topic difficulty esti-
mation depends on the topic set employed. Adding or removing
topics can alter the difficulty assessment. (3) Relevance and measure
inconsistency. Using average precision as a base for difficulty esti-
mations restricts them to binary relevance labels—thus, valuable
information is not considered for topic difficulty; also, given the
importance of NDCG-based evaluations, using different measures
to judge systems and topics seems inconsistent. (4) Discrete class
labeling. Instead of ordinal labels such as “easy” and “hard”, a nu-
merical scale to reflect topic difficulty is desirable. Besides using
such values in other situations, denoting difficulty on ratio scale
allows for inferring all lower-scale levels.

3 DEFINITION AND INVARIANCE PROOFS

In this section, we briefly recap the NDCG measure and then analyze
its shift and scale invariance properties as necessary prerequisite
to implement our notion of topic difficulty.

Terminology. Let d be a document from the set D of n documents,
and let t be a topic from the set T of topics formulated for a retrieval
experiment using D. By D, we denote the set of all possible rankings
7w : D — [1,n] (bijective functions from D onto the n possible
ranks), i.e., Dy, is the set of all permutations of the elements of D. An
IR system s € S indexing D and taking part in a retrieval experiment
on T can thus be seen as a mapping s : T — Dp,.

3.1 Normalized Discounted Cumulated Gain

The normalized discounted cumulated gain (NDCG) by Jérvelin and
Kekaldinen [9] has become one of the most widely used measures in
IR evaluations. In contrast to other measures, it takes into account
both the degree of relevance of documents via an information gain
function g, and their ranking position via a discount function A.
Given a ranking 7 from D, for a topic ¢ and a gain function g, the
NDCG score of 7 is computed as follows:

NDCG(D, ¢ ) DCG(D, t, g, x) DCG(D, t, g, x)
, 1,9, ) = = s
g IDCG max DCG(D, £,4.7)
€D,

where the discounted cumulated gain (DCG) of & given D, ¢, and g
is normalized by the maximal, ideal score (IDCG) attainable for the
possible rankings Dy,. The DCG is defined as follows:3

g9(d. 1)
£ 3 (n(d))
where g : T X D — R returns a real-valued information gain score

dependent on the relevance of document d to t,and 1 : [1,n] —» R
a real-valued discount factor dependent on the rank 7 (d) of d.*

DCG(D, t,g, ) =

3To ease later steps, we formalize NDCG based on the tuple (D, ¢, g, ) instead of the
original vector of relevance labels [9]; both formalizations are equivalent.

4Many choices of discount functions are conceivable [22]; logarithmic discount being
the most widespread one: A(i) := log, (i + 1) forrank i € [1,n].
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The gain function g is usually obtained from manual, graded
relevance judgments (e.g., on a 5-point Likert scale) of the docu-
ments in D with regard to topic t. Typically, not all documents in D
are judged, but only a pooled subset Dg = {d |d € Dandds € S :
75(d) < k}, comprising the union of the k top-ranked documents
from the systems S under consideration. Documents ranked below
rank k are considered irrelevant by default but NDCG proved to be
sufficiently robust against incomplete judgments [17, 23].

3.2 Shift and Scale Invariance of NDCG

The properties of NDCG have been studied in great detail: it has
been shown that the measure is bounded, non-monotonic, non-
converging, top-weighted, non-localized, incomplete, and realize-
able [12]. We formally investigate the shift and scale invariance of
NDCG—i.e., whether system rankings change for shifted and/or
scaled scores—and prove that scaling and shifting NDCG does not
result in different rankings. Scale invariance has been informally
considered before [10]; shift invariance not at all. Let g © ¢ and
g ® c denote the element-wise multiplication and addition of the
relevance scores of the documents in D with regard to a topic t
with a constant ¢ € R \ 0. For example, if the domain of relevance
scores of g is {1,2,3,4,5}, then for ¢ = 2 the domain of g © 2 is
{2,4,6,8,10}, and that of g ® 2 is {3,4,5, 6, 7}. For legibility, the
signature of the DCG function is omitted below.

Lemma 1. NDCG is scale invariant.

NDCG(D, t,gO ¢, ) =

3 gde c- _9(d
S i@ ¢ BTG peg
gldc ~ g9(d) ~ ¢-IDCG
max 2 3@y ¢ max X TG
- D¢ _NDCG(D,tgn) O
IDCG

Lemma 2. NDCG is not shift invariant.

NDCG(D, t,g @ c, )

(d)+c g(d) c
> L 2 + X
dep MG e A T o A (@)
(d)+¢
max Y, 24 9(d) c
reDy dep A1) M| L 3Gy 2 Iw@)

Note thatc’ = 3 C =3 ¢ — . SinceVc e R\0:c¢" #0:
dep Ar@) T S AT (d)

DCG 4 DCG+c¢’
IDCG = IDCG +¢’
Corollary 3. NDCG'’s score differences due to scaling and shifting
are linear such that system rankings will not change.
Proof. From Lemma 1 we have gOc¢1 ®cp = gdca Oc1 = gdcy. With
Lemma 2, it follows for A(NDCG(D, t, g, 7), NDCG(D, t,g ® c, 7) ):
A( )_DCG DCG+¢’
*7 IDCG IDCG+c’

7’ ’
- < .DCG - ¢
IDCG - (IDCG + ¢’) IDCG + ¢/

Since the IDCG and ¢’ are constant, A is linear. O

NDCG(D, t, g, ) = =NDCG(D,t,g®c, ) O
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A linear transformation g © m @ n of relevance labels thus changes
the resulting NDCG scores by a linear factor. NDCG retains all of
its other properties, except its boundedness to the [0, 1] range.

4 RATIO-BASED TOPIC DIFFICULTY

To address the issues of the existing topic difficulty estimation
strategies identified in Section 2, we propose a new, ratio-based
strategy: We measure topic difficulty as the ratio of systems scoring
higher than a baseline compared to the overall number of systems.
As a consequence, difficulty scores are continuous numerical values
in the domain [0, 1], solving Issue 4 (discrete class labeling).

But which system can possibly serve as a meaningful, reliable,
and standardized baseline, given the steady progress made on new
systems? While it is conceivable that the community decides to
pick an implementation of a widespread retrieval model, such as
BM25, for a baseline, we introduce another notion which has not
been considered so far: the random ranker. We propose the expected
NDCG score of a hypothetical random ranking function as reference
point, providing for a clear, binary separation between “difficult”
and “not difficult”: if a system scores worse than the random ranker
on a topic, this topic is presumed difficult for that system, and
otherwise not. Using this fixation point provides higher consistency
across different experimental settings, improving on Issue 1 (local
consistency). However, due to the dependence on pooled documents,
Issue 1 cannot be fully solved for offline topic difficulty estimation.

We characterize the expected performance of a hypothetical
random ranking function s;,nq : T X D —yq. Dpn, which picks
a ranking at random from Dy, as its expected NDCG score. The
gain function g forms a discrete gain distribution G(y, o) over its
domain. Therefore, the expected gain value on every rank position
approaches p, which allows for characterizing the expected NDCG
score of s;an4., RNDCG, as follows:

T,

IDCG

Clearly, computing RNDCG over the entire Dj, is nonsensical in
practice, given the high class imbalance between relevant and irrel-
evant documents, where the set of relevant documents is usually
dwarfed by the set of irrelevant ones. However, when applying
depth-k pooling on all systems in S, and computing the random
rankings only on the set of pooled documents Dg, thus obtaining
Ds m, where m = |Dg|, this becomes feasible. Given a sufficient
number of systems and pooling depth, the pooling can be assumed
to contain a representative sample of the relevant documents in
the collection [18]. Thus, the notion of “random ranker” can be
redefined as “random reranker”. This increases usability, since no
extra judgments have to be collected to establish such a baseline,
as all necessary information is already contained in the pooling.

As shown in Section 3.2, NDCG retains its properties and the
contained information when scaling and shifting the distribution
of relevance labels, since this only induces a linear change of the
resulting NDCG scores. We can therefore apply a standardization
which transforms each value z in G as follows:

4 = zZ-H
o

RNDCG =

>
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resulting in ¢/ = 0 and ¢’ = 1 for G’. The key benefit of applying
standardization is that, since y’ = 0, 3_; %’r) = 0 follows for all
values of k and all possible discount functions A. Therefore, RNDCG
is standardized as zero, assigning a fixed and explicit baseline score.
Furthermore, using NDCG with standardized scores, Issue 3 (rele-
vance and measure inconsistency) is solved.

Altogether, we obtain a non-binary topic difficulty score by com-
puting the ratio of positive-scoring system runs to the overall num-
ber of systems that contributed to a topic’s pool when calculating
NDCG scores on standardized score distributions (NDCGg;):

Difficulty () = ﬁ 3 6Gs.)

seS

sty = {1 if NDCGy;g(D, £, g, 15) > 0
s, t) =
0 ifNDCGyq(D, t, g, 75) < 0

Difficulty scores are in [0, 1], where 1 denotes the easiest possible
kind of topic (all systems score better than random) and 0 denotes
the hardest possible kind of topic (all systems score worse than
random). This process is only dependent on the gain distribution
of the topic in question, solving Issue 2 (topic set stability).

5 VALIDATION

This section aims to illustrate our ratio-based topic difficulty esti-
mation in a practical setting, and in comparison to median or mean
aggregation. While our NDCG-based approach of assigning diffi-
culty scores can be motivated purely from a theoretical standpoint,
given that it solves most issues prevalent in existing approaches,
its practical ramifications are explored in more detail here.

We reevaluated the TREC 2012 ad hoc runs [4] with a pooling
depth of k = 20, and applied a standardization to the annotated
labels, for a total of 26 systems across 40 topics. We then calculated
NDCG scores for each system on each topic. We further calculated
the difficulty ratio per topic, and inferred difficulty classes by di-
viding the [0, 1]-range into the four equisized intervals [0, 0.25],
(0.25,0.5], (0.5,0.75], and (0.75, 1], resulting in four discrete classes
in ascending order. In Figure 1, we plot the performance of runs as
boxplot for each topic, with quartiles, outliers and median shown.
A red line is drawn at 0 as visual guide for the baseline. On the right
side of the figure, the topic difficulty score is denoted alongside
the associated difficulty classes, color-coded from top to bottom as
green (“easy”) , yellow (“moderately easy”), orange (“moderately
hard”) and red (“hard”). The general trend is captured by the ratio-
based score, as we can see the overall shift of the topics’ score
distributions being reflected.

Given that our ratio takes into account only whether a score is
higher or lower than the random baseline, not the absolute differ-
ence in scores, the local precision of the decisions is lower than for
median or mean-based approaches. For example, take topics 159
and 174: both have the same difficulty score of 0.81, yet the up-
per 50% of systems perform better on topic 159 than all of the
systems in topic 174. While calculating the mean score instead of
our ratio would differentiate between both topics, the global con-
sistency of the ratio method would be lost. Thus, we deem this
accuracy tradeoff as favorable. Moreover, the decisions of our ratio
seem to be more robust on a local level when dealing with highly
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Figure 1: NDCG scores of TREC runs, difficulty ratio and as-
sociated class per topic, ordered by difficulty.

skewed distributions. For example, the median value in topic 194
is one of the highest in the topic set, yet the whole 25%-quartile
of systems scores worse than 0—indicating that a significant por-
tion of systems have performance difficulties on this topic. When
inferring topic difficulty by median, topic 194 would score one of
the highest; using our ratio, however, assigns a more reasonable
difficulty. This further illustrates the improvement on Issue 1: while
inconsistencies between experiments are given due to dependence
on a system-specific pooling, the newly introduced measure is more
robust in that regard than existing approaches.

The stability of the assessment to outlier runs is demonstrated
in topics 177 and 195. Both exhibit extreme outliers towards the
lower end of the NDCG distribution, while the main cluster of runs
performs considerably better. Yet, when comparing the score distri-
butions of topics with a similar or equal difficulty ratio, both topics
are classified correctly. In average-based aggregation approaches,
these outlier runs would have had greater impact on the difficulty
estimation, skewing the results. If we model changing experiment
conditions, for example by sampling only half of the topics and
repeat the calculation, the scores stay fixed, since the score of a
single topic only depends on the topic itself, not the context of
other topic scores. This allows for repeatable assessments within an
experiment and comparable assessments across experiments. The
redundancy of class labels for different levels of difficulty is further
substantiated: We can not observe great changes of performance
across inter-class borders.
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6 CONCLUSION

We introduce a novel approach of estimating the difficulty of topics
in IR evaluations. Our measure is based on a linear transforma-
tion of the NDCG measure and assigns continuous difficulty scores
derived from the comparison of systems to a random baseline rank-
ing. We demonstrate the usefulness of choosing such a ratio-based
method over mean or median aggregation, and substantiated the
redundancy of discrete class labels.

In addition to improving on several issues noted for previous
measures of topic diffficulty, our approach is useful for several tasks.
For example, selecting a specific set of topics, yielding the highest
evaluation confidence, akin to Zhu et al. [24]; computing a weighted
mean NDCG, placing more emphasis on the systems’ performance
on hard topics; and provide additional insight in emerging domains
of IR, where no baseline systems are established: having a universal
reference point at no extra cost is a valuable resource.
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