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ABSTRACT
NDCG is one of the most commonly used measures to quantify
system performance in retrieval experiments. Though originally
not considered, graded relevance judgments nowadays frequently
include negative labels. Negative relevance labels cause NDCG to
be unbounded. This is probably why widely used implementations
of NDCG map negative relevance labels to zero, thus ensuring the
resulting scores to originate from the [0, 1] range. But zeroing nega-
tive labels discards valuable relevance information, e.g., by treating
spam documents the same as unjudged ones, which are assigned
the relevance label of zero by default. We show that, instead of
zeroing negative labels, a min-max-normalization of NDCG retains
its statistical power while improving its reliability and stability.
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1 INTRODUCTION
Laboratory evaluations of information retrieval systems predomi-
nantly apply the Cranfield paradigm, especially for shared tasks [16].
An evaluation setup requires (1) a set of information needs (top-
ics), (2) relevance judgments for document/topic pairs, and (3) ef-
fectiveness measures that calculate a system’s success using the
relevance judgments. The topic set must be sufficiently large to
allow for insights into overall systems performance, and averaging
the effectiveness scores must be a meaningful operation. Further,
boundedness of scores and them being independent and identically
distributed (i.i.d.) are crucial for statistical testing [12].

One of the most common effectiveness measures used is the Nor-
malizedDiscounted Cumulative Gain (NDCG) [10]. NDCGproduces
effectiveness scores between zero and one when relevance labels
are greater or equal than zero. In current experimental practice—
most notably the TREC conferences—documents can be assigned
negative relevance labels, causing a potential violation of the bound-
edness property of NDCG. According to the assessment guidelines
of the TRECweb tracks, negative labels indicate spam or documents
without use for any reasonable purpose [3–7]. Table 1 provides an
overview of the judgments of the TREC web tracks between 2010
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Table 1: Number of runs and mean label ratio per topic for
the TRECWeb Ad-Hoc Tracks between 2010 and 2014.

TREC Runs Mean Label Ratio per Topic

-2 0 1 2 3 4

2010 56 0.05 0.73 0.17 0.05 0.01 0.00
2011 37 0.06 0.77 0.12 0.05 0.10 0.00
2012 32 0.05 0.73 0.14 0.04 0.02 0.06
2013 34 0.02 0.70 0.21 0.08 0.02 0.01
2014 30 0.06 0.57 0.26 0.11 0.03 0.02

and 2014.1 All web track poolings contain a mean ratio of negative
judgments per topic between two and six percent. Note that similar
or even lower percentages are observable for the higher relevance
grades, whereby negative labels become a major part of the eval-
uation process. Furthermore, the penalization of spam is justified:
spam or documents without use are detrimental to the quality of a
search result and should be labeled accordingly.

Existing implementations of NDCG disregard negative relevance
labels to ensure that the resulting scores are between zero and
one. Thus, they comply with the critical requirement that scores
are bounded and comparable, yet ignore the effect of spam and
junk pages within web search. Implementations like trec_eval,2
trectools [13], and gdeval3 map negative labels to zero, while im-
plementations of widely used LTR pipelines—like RankLib [8],
LETOR 4.0 [14], and LTR-evaluate4—consider negative labels as
invalid. Consequently, evaluations performed on the web tracks
implicitly neglect information contained in up to six percent of
annotated documents by assigning the default zero relevance score.

We study the impact of negative relevance labels on NDCG
scores by reevaluating the TREC web tracks. We further propose a
modified version of NDCG that incorporates negative labels while
ensuring soundness of scores. Our experiments indicate that in-
cluding negative labels into the original NDCG can substantially
impact systems rankings, while ourmodified version producesmore
reliable, stable, and sensitive results than the current practice.5

2 FOUNDATIONS AND RELATEDWORK
Terminology. Let 𝐷 = {𝑑1, . . . , 𝑑𝑛} be a set of 𝑛 documents and 𝑡 a
topic from a set of topics𝑇 with regard to𝐷 . A ranking 𝜋 :𝐷→[1, 𝑛]
is as a bijective function from 𝐷 onto the 𝑛 possible ranks; let 𝐷𝑛

denote the set of all possible rankings (i.e., all permutations of the
elements of 𝐷). An IR system 𝑠 that indexes 𝐷 can thus be defined
as a mapping 𝑠 : 𝑇 → 𝐷𝑛 . Let 𝑆 denote the set of systems.
1TREC 2009 was omitted as it uses a different annotation scheme
2https://github.com/usnistgov/trec_eval
3https://trec.nist.gov/data/web/12/gdeval.pl
4http://learningtorankchallenge.yahoo.com/evaluate.py.txt
5Code and data underlying this paper: https://github.com/webis-de/CIKM-20
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2.1 Normalized Discounted Cumulative Gain
The normalized discounted cumulative gain (NDCG) by Järvelin and
Kekäläinen [10] has become one of the most widely used measures
in IR evaluations. In contrast to other measures, it takes into account
both the degree of relevance of documents via an information gain
function 𝑔, and their ranking position via a discount function 𝜆.
Given a set of documents 𝐷 , a topic 𝑡 , a ranking 𝜋 from 𝐷𝑛 , and a
gain function 𝑔, the NDCG score of 𝜋 is computed as follows:

NDCG(𝐷, 𝑡, 𝑔, 𝜋) = DCG(𝐷, 𝑡, 𝑔, 𝜋)
IDCG =

DCG(𝐷, 𝑡, 𝑔, 𝜋)
max
𝜏 ∈𝐷𝑛

DCG(𝐷, 𝑡, 𝑔, 𝜏) ,

where the discounted cumulative gain (DCG) of 𝜋 given 𝐷 , 𝑡 , and 𝑔
is normalized by the maximal, ideal score (IDCG) attainable for the
possible rankings 𝐷𝑛 . The DCG is defined as follows:6

DCG(𝐷, 𝑡, 𝑔, 𝜋) =
∑
𝑑∈𝐷

𝑔(𝑑, 𝑡)
𝜆(𝜋 (𝑑)) ,

where 𝑔 : 𝑇 × 𝐷 → R returns a real-valued information gain
score dependent on the relevance of 𝑑 to 𝑡 , and 𝜆 : [1, 𝑛] → R a
real-valued discount factor dependent on the rank 𝜋 (𝑑) of 𝑑 .7

2.2 Properties of Effectiveness Measures
Numeric Properties. Moffat [12] identifies seven numeric properties
of effectiveness measures, and shows that NDCG is (1) bounded
(scores reside in a defined interval), (2) convergent (if any rele-
vance labels increase, scores strictly increase), (3) top-weighted
(if a document in the rankings’ top-𝑘 is switched with another of
higher relevance outside the top-𝑘 , resulting scores strictly increase)
(4) realizeable (if at least one relevant document exists, scores can
be maximal). However, it is not (5) monotonous (if 𝑘 is increased,
scores never decrease), (6) localized (scores only depend on the
information in the 𝑘 documents of the ranking), or (7) complete
(scores can be calculated even if there are no relevant documents).
Further, Gienapp et al. [9] formally prove that NDCG is scale invari-
ant, but not shift invariant, and that NDCG scores change linearly
if a linear transformation is applied to the pooled relevance labels.

Reliability. The reliability of a measure denotes its ability to re-
flect the actual performance differences of systems in its score,
minimizing deviation from the “true” performance rating. General-
izability Theory (GT) has been proposed to evaluate reliability in IR
experiments [1], and been used to investigate the optimal gain and
discount functions for NDCG [11]. Assuming that overall variance
in performance scores of systems can be decomposed into a system
variance 𝜎2𝑠 , a topic variance 𝜎2𝑡 , and a system-topic-interaction
variance 𝜎2𝑠 :𝑡 [11], the goal is to draw conclusions about the pro-
portion of variance in evaluation results that stems from actual
performance differences. Variance components can be estimated
by fitting an ANOVA model on the NDCG scores [1, 11]. The reli-
ability coefficient Φ, i.e., the ratio of system to overall variance is
calculated as follows [11, Eq. 2]:
6To ease later steps, we formalize NDCG based on the tuple (𝐷, 𝑡, 𝑔, 𝜋 ) instead of the
original vector of relevance labels [10]; both formalizations are equivalent.
7Many choices of discount functions are conceivable [17]; but logarithmic discount is
the most widespread one: 𝜆 (𝑖) := log2 (𝑖 + 1) for rank 𝑖 ∈ [1, 𝑛]. We use logarithmic
discount throughout this paper.

Φ =
𝜎2𝑠

𝜎2𝑠 + 𝜎2
𝑡 +𝜎2

𝑠 :𝑡
|𝑇 |

.

Stability. The stability of a measure denotes the dependency of
scores on the number of topics it is calculated on. Buckley and
Voorhees [2] quantify stability as the error rate associated with the
decision about which of two tested systems is better, varying the
topic set size𝑚 ∈ [1, |𝑇 |]. This rate is defined as ratio of erroneous
decisions to total decisions across all system pairs [2, Eq. 1]:

ErrorRate =

∑
𝑠𝑎,𝑠𝑏 ∈𝑆

min( |𝑠𝑎 > 𝑠𝑏 |, |𝑠𝑎 < 𝑠𝑏 |)∑
𝑠𝑎,𝑠𝑏 ∈𝑆

( |𝑠𝑎 > 𝑠𝑏 | + |𝑠𝑎 < 𝑠𝑏 | + |𝑠𝑎 = 𝑠𝑏 |)
,

where |𝑠𝑎 > 𝑠𝑏 | denotes the number of topics a system 𝑠𝑎 scored
better on than a system 𝑠𝑏 , with |𝑠𝑎 < 𝑠𝑏 | and |𝑠𝑎 = 𝑠𝑏 | defined
analogously. Two systems are deemed equal when their absolute
score difference does not exceed a threshold given by a fuzzyness
factor 𝑓 . Buckley and Voorhees [2] conduct the stability analysis
by randomly sampling topics 100 times for each𝑚 with 𝑓 = 5%.

Sensitivity. The sensitivity, or discriminative power of an evalu-
ation measure denotes its ability to successfully tell two systems
apart, given that their true performance differences are significant.
To test the sensitivity of evaluation measures, Sakai [15] proposed
the bootstrap method, where the sensitivity of a measure is quan-
tified by testing all pairs of systems under consideration using a
bootstrap hypothesis test and counting the number of system pairs
achieving a significance level lower than a given threshold.

3 NDCG FOR NEGATIVE RELEVANCE LABELS
The boundedness of NDCG depends on a narrow definition of
allowed relevance labels. Järvelin and Kekäläinen [10] only con-
sidered positive values when they initially described the measure,
and Moffat [12] restricts his considerations to positive values in the
range between 0 and 1. The use of negative relevance labels results
in a violation of the boundedness property—neither the upper nor
the lower bound can be guaranteed anymore.

Two violations are possible if both numerator (DCG) and denom-
inator (IDCG) of the NDCG formula are allowed to extend into the
negative domain: (1) The lower bound can fall below 0, if the DCG
value is negative, i.e., when enough documents with negative gain
values appear at high-ranking positions. (2) The upper bound can
exceed 1, if both the DCG and the IDCG are negative. In such a
case, the absolute value of the IDCG is smaller than the absolute
value of the DCG, thus allowing NDCG to become larger than 1.

As outlined in the Introduction, boundedness is essential to
compute score means. Two approaches to restore boundedness can
be distinguished: either, the negative scores are eliminated, or the
metric itself is adapted to be well-defined for negative relevance
labels. To distinguish the unmodified formulation (i.e., calculating
NDCG directly on all scores), we refer to it as NDCGorg.

We further consider one variant of NDCGorg for each of the pos-
sible approaches: (1) NDCG0, where negative scores are eliminated
by mapping them to zero. Since the NDCGorg measure itself is un-
affected by this score transformation, all properties of NDCGorg, as
well as boundedness remain valid. While mapping is a commonly
employed strategy, it is problematic, as it can significantly impact
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evaluation results; (2) we define a new, more constrained notion of
NDCGorg to explicitly normalize the range of values the measure
can attain to the [0, 1] interval, where 1 represents the perfect rank-
ing, but additionally, 0 is now defined as the worst possible ranking
of documents for the topic in question. To achieve this standardized
range, we extend NDCGorg to adopt full min-max-normalization.
While NDCGorg traditionally normalizes using only the maximum
value (IDCG), our constrained version (NDCGmin) also incorporates
the worst possible ranking of the pooling, formalized as follows,
with function signatures shortened for brevity:

NDCGmin (𝜋) =
DCG(𝜋) − min

𝜏 ∈𝐷𝑛

DCG(𝜏)

max
𝜏 ∈𝐷𝑛

DCG(𝜏) − min
𝜏 ∈𝐷𝑛

DCG(𝜏)

Since minDCG is constant within a topic, substracting it from
both the numerator and the denominator of the NDCGorg formula is
a linear transformation. Thus, the intra-topic relationship between
NDCGorg and NDCGmin is linear and all the properties noted for
NDCGorg by Moffat [12] are also applicable to NDCGmin, with
boundedness now explicitly ensured for all relevance labels.

4 COMPARISON OF EVALUATION RESULTS
Experimental Setup. To study the impact of negative gain values as
well as the different strategies to deal with them on IR evaluations,
we reevaluate the runs submitted to the TREC Web Tracks 2010
to 2014 [3–7]. For each track, we calculate the NDCGorg, NDCG0,
and NDCGmin scores for each topic and run using the original
pooling depths (𝑘 = 20 for 2010/11/12; 𝑘 = 15 for 2013/14).

Boundedness.We first investigate the lower bound of attainable
NDCGorg scores per topic by calculating the NDCGorg score of the
worst possible ranking (i.e., the inverse IDCG). The widespread
violation of the boundedness property is apparent in Table 2a, with
a large portion of topics in each year falling below zero regarding
attainable NDCGorg scores. This is not surprising, as only one neg-
ative relevance label suffices for this violation. Yet, a high amount
of topics effectively double the range of possible NDCGorg scores,
reaching beyond −1. While none of the submitted runs achieve a
negative score, the different attainable score ranges across topics
increase the score variance, impacting the reliability of experiments.

Change in System Rankings. To compare the different system
rankings as given by the mean system scores across topics with
each measure, we calculate the correlation coefficient Spearman’s 𝜌
between the ranking given by mean NDCGorg scores to the rank-
ings given by mean NDCG0 and mean NDCGmin (Table 2b). While
the resulting rankings are virtually the same between all measures
in 2013 and 2014, the system rankings as produced by NDCG0-
based evaluation substantially differ from the NDCGorg rankings
in the other years, with correlation falling as low as 0.79 in 2011.
Nevertheless, the rankings given by NDCGmin almost perfectly re-
produce the system rankings obtained with traditional NDCGorg in
all instances. To closely examine the differences between NDCGorg
and NDCG0 rankings, we plot the attained ranks for each system
in 2010/11/12 in Table 2c. Most of the divergence between rankings
occurs at lower ranks, however, some deviations in top ranks are
observable. This is problematic: the best-performing system may
depend on whether negative gain values are considered or not.

5 COMPARISON OF MEASURE PROPERTIES
Experimental Setup. In this section, we compare the reliability, stabil-
ity, and sensitivity of NDCGorg, NDCG0, and NDCGmin. We reeval-
uate the runs submitted to the Web Tracks 2011 and 2012 [4, 5].
These two were selected since the 2011 track has shown a clear
divergence between NDCGorg and NDCG0 scores (𝜌 = 0.79), in-
dicating that negative relevance labels are especially problematic
here, while the results are much closer for 2012 (𝜌 = 0.91), provid-
ing complementary insight for non-problematic settings. Also, both
years are judged up to a pooling depth 𝑘 = 20 and they had a similar
number of submitted runs. For both tracks, we analyze the scores
of NDCGorg, NDCG0, and NDCGmin at different pooling depths
to provide an intuition about their benefits and shortcomings. We
calculate scores for each topic and run on poolings of depth 𝑘 of 5,
10, 15, and 20, respectively.

Reliability. To compare the reliability of the measures, we cal-
culate Φ for different pooling depths per year. Results are given
in Table 2d. Throughout all years and pooling depths, NDCGmin
achieves the highest reliability score, indicating that existing NDCG
implementations can improve their reliability by switching from
NDCG0 to NDCGmin. The reliability of NDCGorg is much lower
than that for NDCGmin and NDCG0. This supports two key conclu-
sions: (1) the usage of negative scores (in violation of boundedness)
is indeed problematic in NDCGorg-based evaluations, as the relia-
bility of the metric is decreased; (2) adopting NDCGmin instead of
NDCG0 yields benefits, as it achieves the highest reliability among
the tested measures. The increased reliability could be attributed
to decreasing the impact of score variance across topics, as they
are normalized to the same standardized range. The variance due
to topic-system-interaction (i.e., different systems have difficulties
with different topics) is not influenced by this normalization.

Stability. To compare the stability of the measures, we calculate
the error rates as proposed by Buckley and Voorhees [2]. However,
we increase the number of samples to 𝑛 = 200 to accommodate
for the higher number of compared systems and topics. Results are
given in Figure 2e, plotting the error rate by increasing number of
topics, for each year and value of 𝑘 , respectively. Two key insights
become apparent: (1) the error rate is inversely related to the num-
ber of topics in all three measures; (2) while the three measures are
similar at lower values of 𝑘 , NDCGmin consistently achieves a lower
error rate across all numbers of topics at 𝑘 = 20. Also, NDCGorg
and NDCG0 seem to suffer from an increased error rate for higher
values of 𝑘 , an effect that is not observable for NDCGmin.

Sensitivity. To compare the sensitivity of the measures, we use
the paired bootstrap method of Sakai [15]. For each pair of runs
within one year, the achieved significance level was calculated at
different pooling depths (𝑛 = 1000). Results are given in Figure 2f,
where we plot the cumulative ratio of systems achieving a certain
significance level with testing based on NDCGorg, NDCG0, and
NDCGmin. The sensitivity curves of NDCGorg and NDCGmin are
nearly indistinguishable, while NDCG0 is consistently less sensi-
tive. This provides evidence that the information lost by ignoring
negative labels is vital to achieve evaluation results with high dis-
criminative power—a finding that implementations of NDCG can
directly employ by switching from NDCG0 to NDCGmin.
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Table 2: (a) Proportion of topics with an NDCGorg bound lower than 0/-1. (b) Spearman’s 𝜌 correlation coefficient of mean
system scores for all measure combinations. (c) NDCGorg system rank by NDCG0 system rank for 2010, 2011, 2012. (d) Φ-
coefficients of NDCGorg, NDCG0, and NDCGmin at different pooling depths. Highest per column segment marked. (e) Error
rate by number of topics per year and pooling depth 𝑘 . (f) Cumulative ratio of system pairs at each significance level per year
and pooling depth 𝑘 . Key: NDCGmin ; NDCGorg , NDCG0 .

TREC

2010
2011
2012
2013
2014

(a)
Topics

NDCGorg

< 0 ≤ −1
100% 44%
94% 68%
96% 08%
74% 18%
70% 12%

(b)
Spearman’s 𝜌 Correlation

NDCG0 NDCGmin NDCGmin

NDCGorg NDCGorg NDCG0

0.87 1.00 0.88
0.79 0.99 0.82
0.91 0.99 0.93
0.93 0.96 0.97
0.95 0.97 0.99

(c)

0 25 50

0

25
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0 25 50 0 25 50
NDCGorg Rank NDCGorg Rank NDCGorg Rank
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R
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TREC 2010 TREC 2011 TREC 2012

(d)
TREC Measure 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20

NDCGorg 0.903 0.937 0.950 0.924
2011 NDCG0 0.977 0.973 0.978 0.975

NDCGmin 0.996 0.993 0.988 0.984

NDCGorg 0.969 0.930 0.942 0.967
2012 NDCG0 0.958 0.975 0.959 0.940

NDCGmin 0.994 0.995 0.996 0.996

(e)
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E
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R
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E
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e
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Number of Topics

10 20 30 40 50
Number of Topics

TREC 2011
k = 5

TREC 2011
k = 10

TREC 2011
k = 20

TREC 2012
k = 5

TREC 2012
k = 10

TREC 2012
k = 20

(f)

0.2

0.4

0.6

R
at

io

0.00 0.05 0.10 0.15 0.20
Level

0.2

0.4

0.6

R
at

io

0.00 0.05 0.10 0.15 0.20
Level

0.00 0.05 0.10 0.15 0.20
Level

TREC 2011
k = 5

TREC 2011
k = 10

TREC 2011
k = 20

TREC 2012
k = 5

TREC 2012
k = 10

TREC 2012
k = 20

6 CONCLUSION
When calculating NDCG on a pooling that contains negative rele-
vance labels, boundedness is violated. As unbounded metrics should
not be used for mean computation, this is not only a theoretical is-
sue, but also a widespread problem in practice: it opposes one of the
central assumptions that system performance can be approximated
by mean performance over a set of topics. All NDCG implementa-
tions provided by commonly used evaluation tools circumvent this
problem by ignoring negative scores altogether. However, since cru-
cial information about system performance is ignored, the ranking
of systems can be significantly affected, even at top ranks.

As an alternative, we propose a more constrained version of
NDCGorg by adopting full min-max-normalization to render NDCG
well-behaved for arbitrary choices of relevance grades. Besides
reestablishing theoretical consistency, this improves on several
properties of the NDCGorg measure. Our experiments suggest
NDCGmin as viable solution, as it exhibits higher reliability than the
common practice of ignoring negative labels, while reproducing the
system ranking as implied by NDCGorg with similar sensitivity to
NDCG, and achieving a higher discriminative power than NDCG0.
As it also exhibits increased stability, evaluation experiments adopt-
ing this constrained version could potentially achieve conclusive
insights using less topics, thus reducing the cost overhead.
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