
Sparse Pairwise Re-ranking with Pre-trained Transformers
Lukas Gienapp
Leipzig University

Maik Fröbe
Martin-Luther-Universität Halle-Wittenberg

Matthias Hagen
Martin-Luther-Universität Halle-Wittenberg

Martin Potthast
Leipzig University

ABSTRACT
Pairwise re-rankingmodels predict which of two documents is more
relevant to a query and then aggregate a final ranking from such
preferences. This is often more effective than pointwise re-ranking
models that directly predict a relevance value for each document.
However, the high inference overhead of pairwise models limits
their practical application: usually, for a set of 𝑘 documents to be
re-ranked, preferences for all 𝑘2−𝑘 comparison pairs excluding self-
comparisons are aggregated. We investigate whether the efficiency
of pairwise re-ranking can be improved by sampling from all pairs.
In an exploratory study, we evaluate three sampling methods and
five preference aggregation methods. The best combination allows
for an order of magnitude fewer comparisons at an acceptable loss
of retrieval effectiveness, while competitive effectiveness is already
achieved with about one third of the comparisons.

CCS CONCEPTS
• Information systems→ Learning to rank;Rank aggregation;
Retrieval effectiveness; Retrieval efficiency.

KEYWORDS
Pairwise re-ranking; Sampling; Efficiency; Pre-trained transformers
ACM Reference Format:
Lukas Gienapp, Maik Fröbe, Matthias Hagen, and Martin Potthast. 2022.
Sparse Pairwise Re-ranking with Pre-trained Transformers. In Proceedings
of the 2022 ACM SIGIR International Conference on the Theory of Information
Retrieval (ICTIR ’22), July 11–12, 2022, Madrid, Spain. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3539813.3545140

1 INTRODUCTION
Pre-trained transformers have ushered in a new era in information
retrieval: with a sufficient amount of training data, transformer-
based re-ranking models can significantly outperform traditional
retrieval models [24]. Two classes of re-rankers are implemented
using pre-trained transformers [25]: (1) pointwise re-rankers that
predict the relevance of a document 𝑑 to a query 𝑞, and (2) pairwise
re-rankers that predict which of two documents (𝑑𝑖 , 𝑑 𝑗) is more rel-
evant to 𝑞. To further maximize re-ranking effectiveness, the mono-
duo design pattern [34] shown in Figure 1 applies both sequentially.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICTIR ’22, July 11–12, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9412-3/22/07. . . $15.00
https://doi.org/10.1145/3539813.3545140

Ranking
by s1, ..., sk

...

d3 s3

d2 s2

d5 s5

dk sk

Pairwise re-ranking

Sampling

Pairwise inference

Aggregation

p1,2
d2

d1

q
p1,3

d3

d1

q
pi,j

dj

di

q

s1

d1

s2

d2

s3

d3

sk

dk

d2

d1

dj

di

d1

d2

d3

d1

d1

d3 ...

...

...

P
oi

nw
is

e
re

-r
an

ki
ng

 d
1,

 ..
.,

d k
'

Q
ue

ry
 q

R
an

ki
ng

 o
f D

 w
ith

 r
es

pe
ct

 to
 q

Figure 1: The mono-duo design pattern for re-ranking. Parts
investigated in this paper are highlighted in orange. Com-
parisons omitted by sampling are striped.

Given a query 𝑞, a document set 𝐷 , and a ranking of 𝐷 produced by
a traditional retrieval model like BM25, the top-𝑘 ′ documents𝐷𝑘′ =

{𝑑1, . . . , 𝑑𝑘′} ⊂ 𝐷 are re-ranked according to their pointwise rel-
evance to 𝑞. Then, the top-𝑘 documents 𝐷𝑘 ⊂ 𝐷𝑘′ , 𝑘 ≪ 𝑘 ′, are
re-ranked based on pairwise comparisons in three steps. First, pairs
of documents (𝑑𝑖 , 𝑑 𝑗) are sampled, where 𝑖, 𝑗 ∈ [1, 𝑘] and 𝑖 ≠ 𝑗 . Sec-
ond, each pair (𝑑𝑖 , 𝑑 𝑗) is passed to a transformer model to predict a
probability 𝑝𝑖 𝑗 indicating whether the document 𝑑𝑖 (𝑝𝑖 𝑗 ≥ 0.5) or
the document 𝑑 𝑗 (𝑝𝑖 𝑗 < 0.5) is more relevant to 𝑞. Third, for each
document 𝑑𝑖 , a relevance score 𝑠𝑖 is aggregated from all probabili-
ties of comparisons including 𝑑𝑖 , and these scores are then used to
derive the final pairwise re-ranking.

Empirical evidence suggests that pairwise re-rankers are more
effective than pointwise re-rankers since their relevance scores
take the relative relevance differences between documents into ac-
count, rather than making independent relevance predictions [34].
To maximize the potential effectiveness gains, previous work has
relied on exhaustive comparisons of all 𝑘2 − 𝑘 pairs of the top-𝑘
documents 𝐷𝑘 to be re-ranked. Given the high run time overhead
of transformer inferences, this quadratic step led to the recommen-
dation that the re-ranking depth should be limited to 𝑘 ≤ 50.

However, many of the estimated comparison probabilities may
be redundant in that they can be predicted from those of other
comparisons. A theoretical lower bound on the run time complexity
is 𝑂 (𝑘 log𝑘) using a suitable sorting algorithm if the estimated

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3539813.3545140
https://doi.org/10.1145/3539813.3545140

ICTIR ’22, July 11–12, 2022, Madrid, Spain Lukas Gienapp, Maik Fröbe, Matthias Hagen, and Martin Potthast

comparisons were “consistent” (i.e., 𝑝𝑖 𝑗 = 1 − 𝑝 𝑗𝑖) and transitive.
We investigate for the first time if the efficiency of pairwise re-
rankers can be increased without a significant loss of effectiveness
by sampling from and thus sparsifying the comparison set.

The two components of the mono-duo re-ranking pipeline that
we study in this paper are highlighted in Figure 1: We introduce
a sampling step before the pairwise inference to draw a subset of
the 𝑘2 − 𝑘 possible comparisons, and we revisit the aggregation
step since its effectiveness directly depends on the kind of sample it
receives (Section 3). To investigate the effect of sparsification on the
retrieval effectiveness, we study three sampling methods (global
random, exhaustive window, skip-window) and five aggregation
methods (sorting, summation, regression, greedy, and graph-based)
on three datasets (ClueWeb09, ClueWeb12, MS MARCO) using the
pointwise monoT5 and the pairwise duoT5 models [34]. Our results
show that skip-window sampling with greedy aggregation allows
for an order of magnitude fewer comparisons at an acceptable
loss of effectiveness, while competitive effectiveness to the all-
pairs approach can already be achieved with only one third of
the comparisons (Section 5). All code and data underlying our
experiments are publicly available.1

2 RELATEDWORK
We briefly give some background on the history of learning-to-rank
retrieval models before detailing the nature of pairwise learning-
to-rank models and reviewing rank aggregation approaches, which
we employ to aggregate pairwise preferences into a final ranking.
Finally, we describe some related efforts at making transformer-
based learning to rank more efficient.

Learning to Rank. Since decades, machine learning has been ap-
plied to improve retrieval effectiveness [17, 25]. Traditional feature-
based learning-to-rank models evolved from pointwise over pair-
wise to listwise approaches [26]. While feature-based models are
still successful [35], the recent promising retrieval effectiveness
results of pre-trained transformer models [25] has shifted the com-
munity’s focus away from feature-based learning to rank. But his-
tory appears to repeat itself as the aforementioned evolution from
pointwise approaches like monoBERT [32] and monoT5 [31] to
pairwise approaches [25] can been observed as well.

Pairwise Learning to Rank. Pairwise learning-to-rank approaches
predict which document in a pair is probably more relevant to a
query and should be ranked higher [26]. In feature-based as well as
transformer-based learning to rank, pairwise approaches usually
outperform pointwise ones that score documents independently of
each other [26]. Yet, when the inference step of a pairwise model
compares all pairs of documents, the run time requirement is qua-
dratic in the number of documents to be ranked. In an effort to re-
duce the comparison count, extensive studies of theoretical proper-
ties of feature-based pairwise approaches [9, 23] have led to sugges-
tions for better run time characteristics. For example, SortNet [36]
uses a learned preference function that is guaranteed to output
symmetric preferences, allowing to skip half of the comparisons.
Yet, recent pairwise transformer-based models like duoBERT [34]
and the more effective duoT5 [34] lack the desirable symmetry prop-
erty of models like SortNet. Additionally, the theoretical analysis of
1https://github.com/webis-de/ICTIR-22

duoBERT and duoT5 is still in its infancy; previous work even found
such models difficult to be interpreted [27, 41]. The effectiveness
of duoBERT or duoT5 relies on computing preferences for all pairs
of documents, at the expense of their efficiency [45] limiting their
applicability in search scenarios with run time constraints.

Rank Aggregation. Rank aggregation [26] uses pairwise rele-
vance preference probabilities to derive a ranking—often by com-
puting a score for each individual document. Finding an optimal ag-
gregation with arbitrarily-sized inputs is an NP-hard problem [10],
but many approaches are known to work well in practice. While
dynamic aggregation methods decide which documents to compare
next based on all previous comparisons, static aggregation meth-
ods assume that the required pairwise comparisons are conducted
before the actual aggregation starts [42].

In our study, we employ the following five aggregation methods
(details in Section 3.2): (1) Sorting via the KwikSort method [2],
which assumes that the comparisons are consistent and form a total
order, (2) additive aggregation [34], where the rank of a document
is indicated by the sum of the document’s comparison probabili-
ties (potentially transforming the probabilities before summation),
(3) regression-based aggregation [4, 38, 40, 46], where latent scores
for documents are learned so that they optimally correspond to a
given set of pairwise comparisons, (4) greedy aggregation [3, 10], in
which a heuristic iteratively selects and removes the best document
from a given set and then proceeds with the rest, and (5) graph-
based aggregation [43], where comparisons are interpreted as di-
rected edges between document nodes and a measure of graph
centrality is used to derive a ranking score.

Efficiency Improvements for Transformer-based Re-Rankers. The
high computational cost of re-ranking documents with pre-trained
transformers has recently received attention [20]. Even for point-
wise approaches, the inference overhead can be prohibitive for
practical applications [45]. There are two ideas to improve the ef-
ficiency of neural re-rankers: (1) improving the efficiency of the
ranking model, and (2) reducing the required number of inferences.

Approaches to the former include early-exiting from inference by
intermediate between-layer classification in BERT-like models [44],
model distillation [18, 19], or improved dense representations [39].
For the latter, Zhang et al. [45] propose to introduce filtering steps
inmulti-stage re-ranking pipelines. They utilize feature-based learn-
ing to rank to compute a set of candidate documents that is then
re-ranked using a BERT-like neural model, increasing efficiency by
a factor of up to 18 compared to an unfiltered baseline at the same
effectiveness. But while document filtering has been studied for
pointwise re-ranking, to our knowledge, filtering approaches for
pairwise re-ranking have not been addressed to date.

3 SPARSIFIED PAIRWISE RE-RANKING
In this section, we describe the steps we adapted in the mono-
duo re-ranking pipeline (Figure 1): sampling methods to select
the to-be-compared document pairs (three methods, Section 3.1),
and aggregation methods that derive a ranking from the ranking
preferences (five methods, Section 3.2). For completeness, we also
briefly detail the steps adopted from the literature: initial retrieval,
as well as pointwise and pairwise re-ranking (Section 3.3).

https://github.com/webis-de/ICTIR-22

Sparse Pairwise Re-ranking with Pre-trained Transformers ICTIR ’22, July 11–12, 2022, Madrid, Spain

3.1 Sampling
Based on the top-𝑘 results 𝐷𝑘 of the pointwise re-ranking step of
the mono-duo paradigm, we propose to sparsify the set 𝐶all of all
𝑘2 − 𝑘 comparisons (no self-comparisons) and to use a sampled
comparison set 𝐶 ⊂ 𝐶all as input for the pairwise re-ranking step.
The goal is to minimize the size of𝐶 and thus the effort of pairwise
re-ranking without compromising the quality of the final ranking.

We distinguish random from structured sampling, with the main
difference being their (non-)determinism. Independent random sam-
ples from a given 𝐶all very likely contain different comparisons,
but structured samples always choose the same comparisons. To
be compatible with a variety of aggregation methods, a sampling
must meet two requirements: (1) each document is part of at least
one comparison, (2) each comparison is sampled at most once. Fig-
ure 2 illustrates the three sampling methods introduced below for a
document set 𝐷𝑘 of size 𝑘 = 20 at two sampling rates, one per line.

Global random sampling (G-Random). For each of the top-𝑘 doc-
uments 𝑑 ∈ 𝐷𝑘 from the pointwise ranking, a fraction 𝑟 ∈ (0...1]
of the remaining 𝑘 − 1 documents is randomly selected for the
comparison set 𝐶 that then has the size |𝐶 | = ⌊𝑟 · (𝑘2 − 𝑘)⌋.

Neighborhood window sampling (N-Window). A sliding window
of size 𝑚 ≤ 𝑘 − 1 is moved over the top-𝑘 documents 𝐷𝑘 from
the pointwise ranking. For document 𝑑𝑖 ∈ 𝐷𝑘 , its𝑚 direct succes-
sors in the ranking are sampled for comparison. But since the last
𝑚 documents in the ranking of 𝐷𝑘 have less than𝑚 successors, we
let the window “wrap around” to the top-ranked documents. For
document 𝑑𝑖 , the𝑚 sampled comparisons (𝑑𝑖 , 𝑑 𝑗) ∈ 𝐶 thus fulfill
𝑗 = 1 + (𝑎 mod 𝑘) for 𝑎 ∈ {𝑖, . . . , 𝑖 +𝑚 − 1}. The size of the sampled
comparison set 𝐶 is 𝑘 ·𝑚 and each document is the first entry of
𝑚 comparisons and the second entry of another𝑚 comparisons.

An assumption underlying the neighborhood sampling is that
the “global” pointwise ranking is sensible but that “local” re-ranking
leads to an improved effectiveness. If true, however, it would be
plausible to stop the window for 𝑖 > 𝑘 −𝑚 rather than to wrap
it around. However, pilot experiments have shown that this leads
to poorer effectiveness, possibly because fewer comparisons are
sampled at both the beginning and the end of a top-𝑘 ranking.

Skip-window sampling (S-Window). N-Window samples from
the “local” neighborhood in a ranking. To enable more “global”
comparisons, we introduce a skip size 𝜆 ∈ N+. For 𝑑𝑖 ∈ 𝐷𝑘 , compar-
isons (𝑑𝑖 , 𝑑 𝑗) to𝑚 successors are sampled so that 𝑗 = 1+ (𝑎 mod 𝑘)
for 𝑎 ∈ {𝑖+𝜆−1, 𝑖+2𝜆−1, . . . , 𝑖+𝑚𝜆−1}; when 𝑗 = 𝑖 for some 𝑎, that
comparison is not included in the sample. For 𝜆 = 1, S-Window cor-
responds to N-Window, and for 𝜆 = 3, for example, each document
is compared to every third of its successors. The 𝜆-skip determinis-
tically controls the “globality” of a sample without increasing the
amount |𝐶 | of sampled comparisons compared to N-Window.

3.2 Aggregation
For each comparison (𝑑𝑖 , 𝑑 𝑗) ∈ 𝐶 , a pairwise model computes a
preference probability 𝑝𝑖 𝑗 , which indicates how likely 𝑑𝑖 should
be ranked above (𝑝𝑖 𝑗 ≥ 0.5) or below 𝑑 𝑗 (𝑝𝑖 𝑗 < 0.5). From the
probabilities computed for𝐶 , an aggregation method derives a rele-
vance value 𝑠𝑖 for each document 𝑑𝑖 . We study five paradigmatically
different aggregation methods.

i

G-Random (f=0.2) N-Window (m=4) S-Window (m=4, λ=4)

j

i

G-Random (f=0.5)

j

N-Window (m=10)

j

S-Window (m=10, λ=2)

Figure 2: Example comparison sets of different sampling
procedures for 20 documents at different sampling rates. If
comparison (𝑑𝑖 , 𝑑 𝑗) is sampled, cell 𝑖, 𝑗 is colored blue; the
grey cell for S-Window illustrates the omitted case 𝑗 = 𝑖.

KwikSort. As a baseline, we use the KwikSort method [2]. It is
an extension of the Quicksort algorithm for data with preferences
and, in our case of top-𝑘 ranking, has an expected number of com-
parisons in 𝑂 (𝑘 log𝑘). First, a random document 𝑑𝑖 is chosen to
be the pivot. Then, all other documents are compared to the pivot
placing the ones to be lower-ranked than 𝑑𝑖 and the ones to be
higher-ranked in separate subsets. These subsets are recursively
ranked until a final ranking is obtained. KwikSort does not rely on a
preceding sampling step; that the expected number of comparisons
is in 𝑂 (𝑘 log𝑘) is a feature of the dynamic aggregation itself.

Additive Aggregation. Pradeep et al. [34] propose four different
aggregation techniques based on preference probability summation.
They find the symmetric sum of preference probabilities to yield
the best effectiveness:

𝑠𝑖 =
∑︁

𝑗 ∈1...𝑘
(𝑝𝑖 𝑗 + (1 − 𝑝 𝑗𝑖)) .

However, in our samples, not all comparisons are present so that
we replace missing summands 𝑝𝑖 𝑗 or (1 − 𝑝 𝑗𝑖) by 0.

Bradley-Terry Aggregation. The Bradley-Terry model [4] infers a
latent score 𝑠𝑖 ∈ 𝑆 for each document 𝑑𝑖 ∈ 𝐷𝑘 based on the prefer-
ences expressed in the sampled comparison set 𝐶 using maximum-
likelihood estimation. In its original form, exponential score func-
tions were used, which corresponds to a logistic regression on
pairwise data [1] and can be expressed as:

L(𝑆,𝐶) =
∑︁

𝑑𝑖 ≻𝑑 𝑗

log 𝑒𝑠𝑖

𝑒𝑠𝑖 + 𝑒𝑠 𝑗 +
∑︁

𝑑𝑖 ≺𝑑 𝑗

log 𝑒𝑠 𝑗

𝑒𝑠𝑖 + 𝑒𝑠 𝑗 .

Here, 𝑑𝑖 ≻ 𝑑 𝑗 denotes all comparisons (𝑑𝑖 , 𝑑 𝑗) ∈ 𝐶 with 𝑝𝑖 𝑗 ≥ 0.5
and 𝑑𝑖 ≺ 𝑑 𝑗 denotes all comparisons (𝑑𝑖 , 𝑑 𝑗) ∈ 𝐶 with 𝑝𝑖 𝑗 < 0.5.
The unknown latent score set 𝑆 is usually found via BFGS optimiza-
tion [16] so that a ranking according to the 𝑠𝑖 violates as few of the
preferences from the comparison sample 𝐶 as possible.

ICTIR ’22, July 11–12, 2022, Madrid, Spain Lukas Gienapp, Maik Fröbe, Matthias Hagen, and Martin Potthast

Input: Document set 𝐷𝑘 , preference probabilities 𝑝𝑖 𝑗
Output: Score 𝑠 for each 𝑑 ∈ 𝐷𝑘

foreach 𝑑𝑖 ∈ 𝐷𝑘 do 𝑡𝑖 ←
∑
𝑑 𝑗 ∈𝐷𝑘

𝑝𝑖 𝑗 −
∑
𝑑 𝑗 ∈𝐷𝑘

𝑝 𝑗𝑖 ;
while 𝐷𝑘 ≠ ∅ do

𝑑 𝑗 ← arg max𝑑𝑖 ∈𝐷𝑘
𝑡𝑖 ;

𝑠 𝑗 ← |𝐷𝑘 |;
𝐷𝑘 ← 𝐷𝑘 \ {𝑑 𝑗 };
foreach 𝑑𝑖 ∈ 𝐷𝑘 do 𝑡𝑖 ← 𝑡𝑖 − 𝑝𝑖 𝑗 + 𝑝 𝑗𝑖 ;

end
Algorithm 1: Greedy aggregation of preferences [10].

Greedy Aggregation. Cohen et al. [10] propose a greedy ordering
algorithm that is proven to closely approximate the best total order
in terms of the number of violated preferences. Algorithm 1 shows
its pseudocode. In every iteration, the document 𝑑 𝑗 with the highest
“potential” 𝑡 𝑗 2 is appended to the re-ranking on the highest still
unoccupied rank by setting score 𝑠 𝑗 accordingly. The potentials of
the remaining documents are updated by canceling out the respec-
tive terms that include 𝑑 𝑗 . With sampling, the comparison set is
incomplete; missing probabilities 𝑝𝑖 𝑗 are set to zero.

PageRank Aggregation. A comparison set 𝐶 induces a directed
graphwith𝐷𝑘 as nodes and comparisons as directed edgesweighted
with preference probabilities. We introduce a new aggregation
method that computes the graph centrality measure PageRank [33],
extended for weighted graphs [29], to rank the documents. The
fundamental principle of PageRank is that nodes with incoming
edges from nodes with high PageRank scores should also receive
high PageRank scores. The respective PageRank-style aggregation
of a score 𝑠𝑖 for a document 𝑑𝑖 then is

𝑠𝑖 = 𝛾 · 1
|𝐷𝑘 |

+ (1 − 𝛾) ·
∑︁

(𝑑 𝑗 ,𝑑𝑖) ∈𝐶

𝑝 𝑗𝑖∑
𝑙 ∈[1,𝑘] 𝑝 𝑗𝑙

· 𝑠 𝑗 ,

where using the components with the damping factor 𝛼 ∈ [0, 1] en-
sure convergence when computing the PageRank scores iteratively.

3.3 Initial Retrieval and Re-ranking
Following the experimental setup of Pradeep et al. [34] closely
(see Figure 1), for each query, we first obtain an initial ranking
using BM25 (PyTerrier implementation [28], default configuration).
The top-1000 BM25 results are then re-ranked using monoT5 [31]
in the pointwise re-ranking step. For the top-50 monoT5 results,
duoT5 [34] infers preference probabilities in the second step of pair-
wise re-ranking, after sampling. For both, monoT5 and duoT5, we
apply the largest available pre-trained version.3 We use T5 instead
of BERT variants, as T5 has been shown to be more effective [25].
To avoid repeated inferences in our experiments, all 𝑘2 −𝑘 pairwise
preference probabilities are cached once for each query.

The maximum input length of transformer models is limited, so
that a representative passage has to be chosen from each document
for inference. Following the method of Dai and Callan [15], we
split each document into fixed-length non-overlapping passages of
2The “potential” basically tallies 𝑑𝑖 ’s “wins” against other documents compared to its
“losses” in terms of preference probabilities.
3monoT5: https://huggingface.co/castorini/monot5-3b-msmarco
duoT5: https://huggingface.co/castorini/duot5-3b-msmarco

about 250 words (using the TREC CAsT Y4 tools;4 splits at sentence
boundaries). Fixed-length passages have been shown to be more ef-
fective than variable-length passages [22]. In our pilot experiments,
using the first passage was the most effective heuristic, so that we
use them for preference probability inference.

4 EXPERIMENTAL SETUP
In this section, we introduce our evaluation measures, detailing in
particular measures for consistency, complementarity, and transitiv-
ity of the aggregated relevance scores, and recap the used datasets.

4.1 Evaluation Measures
We follow similar studies of the mono/duoT5 models [34] and use
nDCG@10 [21] to evaluate the retrieval effectiveness. When re-
ranking the top-𝑘 results of a pointwise model, the 𝑘2 − 𝑘 com-
parisons 𝐶all usually performed by a pairwise model may result in
inconsistent preference probabilities (1) at the level of a document
pair and (2) at the level of document triples. We further examine
these potential inconsistencies, as they can “complicate” the aggre-
gation step and affect the retrieval effectiveness. At the document
pair level, one would expect 𝑝𝑖 𝑗 ≈ 1 − 𝑝 𝑗𝑖 but pairwise models do
not guarantees this and may predict both 𝑑𝑖 ≻ 𝑑 𝑗 for the input pair
(𝑑𝑖 , 𝑑 𝑗) and 𝑑 𝑗 ≻ 𝑑𝑖 for the input pair (𝑑 𝑗 , 𝑑𝑖), or vice versa, where
𝑑𝑖 ≻ 𝑑 𝑗 denotes a ranking preference of the left document 𝑑𝑖 over
the right one 𝑑 𝑗 . At the document triple level, transitivity may be
violated as a model may predict 𝑑𝑖 ≻ 𝑑 𝑗 and 𝑑 𝑗 ≻ 𝑑𝑙 but 𝑑𝑙 ≻ 𝑑𝑖 .

The consistency of an all-(𝑘2 − 𝑘)-pairs comparison set 𝐶all at
the level of document pairs is the fraction of pairs (𝑑𝑖 , 𝑑 𝑗) ∈ 𝐶all
for which 𝑝𝑖 𝑗 ≥ 0.5 and 𝑝 𝑗𝑖 < 0.5:

consistency(𝐶all) =
|{(𝑑𝑖 , 𝑑 𝑗) ∈ 𝐶all : 𝑝𝑖 𝑗 ≥ 0.5 and 𝑝 𝑗𝑖 < 0.5}|

|𝐶all |
.

While consistency captures the comparison direction, also the nu-
merical complementarity of how close 𝑝𝑖 𝑗 + 𝑝 𝑗𝑖 is to the “ideal” 1
can be interesting. Thus, we also measure the 𝜀-complementarity
with respect to a margin of error 𝜀 as:

𝜀-complementarity(𝐶all) =
|{(𝑑𝑖 , 𝑑 𝑗) ∈ 𝐶all : |𝑝𝑖 𝑗 + 𝑝 𝑗𝑖 − 1| < 𝜀}|

|𝐶all |
.

Finally, the transitivity of 𝐶all measures the fraction of document
triples for which the pairwise comparisons are transitive:

transitivity(𝐶all) =
|𝑇 |
|𝑇 | + |𝐼 | , where

𝑇 = {(𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑙) : 𝑝𝑖 𝑗 ≥ 0.5, 𝑝 𝑗𝑙 ≥ 0.5, and 𝑝𝑖𝑙 ≥ 0.5} ∪
{(𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑙) : 𝑝𝑖 𝑗 < 0.5, 𝑝 𝑗𝑙 < 0.5, and 𝑝𝑖𝑙 < 0.5} and

𝐼 = {(𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑙) : 𝑝𝑖 𝑗 ≥ 0.5, 𝑝 𝑗𝑙 ≥ 0.5, but 𝑝𝑖𝑙 < 0.5} ∪
{(𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑙) : 𝑝𝑖 𝑗 < 0.5, 𝑝 𝑗𝑙 < 0.5, but 𝑝𝑖𝑙 ≥ 0.5} .

The more the 𝜀-complementarity for some small 𝜀 and the more
the transitivity of some 𝐶all approach 1, the more a total order
between the documents is implied that probably can also be derived
from some smaller comparison sample 𝐶 ⊂ 𝐶all .
4https://github.com/grill-lab/trec-cast-tools

https://huggingface.co/castorini/monot5-3b-msmarco
https://huggingface.co/castorini/duot5-3b-msmarco
https://github.com/grill-lab/trec-cast-tools

Sparse Pairwise Re-ranking with Pre-trained Transformers ICTIR ’22, July 11–12, 2022, Madrid, Spain

(a)

C
ou

nt 104

103

0 10.2 0.4 0.6 0.8
Preference probability

(b) Consistency
Corpus Mean Std. Min Max

ClueWeb09 0.312 0.136 0.054 0.637
ClueWeb12 0.383 0.115 0.120 0.643
MS MARCO 0.498 0.126 0.136 0.731

(c) Transitivity
Corpus Mean Std. Min Max

ClueWeb09 0.783 0.079 0.616 0.954
ClueWeb12 0.742 0.064 0.611 0.898
MS MARCO 0.693 0.073 0.580 0.901

(d)

C
um

ul
at

ie
 ε

-c
om

pl
em

en
ta

rit
y

ε
0

1

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4

Figure 3: (a) Distribution of the pairwise duoT5 preference probabilities for the comparison set𝐶all of the top-50 pointwise results
per corpus (log-scaled y-axis). (b) Preference probability consistency, (c) transitivity, and (d) cumulative 𝜀-complementarity
over 𝜀. In the plots, the corpora are color-coded as ClueWeb09 , ClueWeb12 , and MS MARCO (Passage) .

4.2 Evaluation Data
We employ three standard retrieval corpora in our experiments: the
ClueWeb09, the ClueWeb12, and the MS MARCO passage corpus.

ClueWeb09. The ClueWeb09 corpus5 consists of 1 billion docu-
ments crawled between January and February 2009. It was used for
the ad-hoc search tasks of the TREC Web tracks 2009–2012 [5–8],
where 70,575 graded relevance judgments were collected on a
4-point scale for 200 topics (avg. 356 judgments per topic).

ClueWeb12. The ClueWeb12 corpus6 consists of 733 million doc-
uments crawled between April and May 2012. It was used for the
ad-hoc search tasks of the TRECWeb tracks 2013/14 [11, 12], where
28,116 graded relevance judgments were collected on a 4-point scale
for 100 topics (avg. 281 judgments per topic).

MS MARCO (Passage). The MS MARCO passage corpus [30]
consists of 8.8 million passages extracted from Bing search en-
gine results. It was used for the passage ranking task of the TREC
Deep Learning tracks 2019/20 [13, 14], where 20,646 graded rele-
vance judgments were collected on a 4-point scale for 97 topics
(avg. 213 judgments per topic). With this corpus, we replicate the
experimental setup of Pradeep et al. [34].

Remark. In our evaluation of re-ranking results, we only consider
judged documents. Evaluation scores calculated excluding unjudged
documents correlate well with evaluations including them [37].

5 EVALUATION RESULTS
We conduct two experiments to evaluate the suitability of sampling
and aggregation methods for efficient pairwise re-ranking. The first
experiment (Section 5.1) explores the properties of the comparison
sets inferred for each of the three corpora. This supplies context to
the ranking effectiveness evaluation in the second experiment (Sec-
tion 5.2), in which we analyze rankings for different combinations
of samplers and aggregators.
5http://lemurproject.org/clueweb09.php/
6http://lemurproject.org/clueweb12.php/

5.1 Evaluation of Pairwise Prediction Properties
For each topic from each corpus, we derive the duoT5 preference
probabilities for the set 𝐶all of all 𝑘2 − 𝑘 pairwise comparisons for
the top-50 results of the pointwise re-ranking and compute the
statistics and measures per corpus shown in Figure 3.

The preference probabilities are highly skewed towards the ex-
tremes of the scale (cf. Figure 3a): for the majority of document
pairs, the preference probability is approximately zero or one. This
effect is stronger for the MS MARCO passage corpus (on which the
model was trained) than for the ClueWeb corpora. Interestingly,
the score distributions are not symmetric, but are slightly skewed
towards 1.0 for all three corpora. Since the comparison set𝐶all con-
tains both comparison directions for every pair, the observed skew
directly suggests to further inspect how consistent, transitive, and
complementary the preferences are for document pairs or triples.

Indeed, on average, only between half (MS MARCO) and a third
of the comparisons (ClueWeb09) are consistent in their direction
(cf. Figure 3b). Some variation across topics exists, yet the consis-
tency is rather low in the majority of the topic-wise comparison
sets. Further, also the cumulative 𝜖-complementarity (cf. Figure 3d)
confirms that the preferences of the pairwise duoT5 model are
not that complementary (i.e., 𝑝𝑖 𝑗 + 𝑝 𝑗𝑖 ≠ 1) for a document pair’s
two possible input orders. Only for a rather large value of 𝜀 = 0.4
all probabilities for pairs in all corpora are 𝜀-complementary (i.e.,
|𝑝𝑖 𝑗 + 𝑝 𝑗𝑖 − 1| ≠ 0.4), and more than half of the pairs require
an 𝜖-value between 0.3 (MS MARCO) and 0.2 (ClueWeb09). For
all corpora, almost no comparison pairs reach a complementarity
of 𝜖 < 0.1. Also the transitivity rates are consistently between 0.7
and 0.8 across all corpora with very little variation per topic. These
observations (consistency and transitivity not that high) suggest
that the comparison-based KwikSort aggregationwill not output the
most effective re-ranking and that very likely more than𝑂 (𝑘 log𝑘)
comparison pairs are needed in a sample for the other aggrega-
tion methods to “work around” the low consistency and lacking
complementarity using more information.

http://lemurproject.org/clueweb09.php/
http://lemurproject.org/clueweb12.php/

ICTIR ’22, July 11–12, 2022, Madrid, Spain Lukas Gienapp, Maik Fröbe, Matthias Hagen, and Martin Potthast

Sample rate
0 0.2 0.4 0.6 0.8 1

Sample rate
0 0.2 0.4 0.6 0.8 1

Sample rate
0 0.2 0.4 0.6 0.8 1

Sample rate
0 0.2 0.4 0.6 0.8 1

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

0.70

0.65

0.60

0.55

0.50

0.45

0.42

0.40

0.38

0.36

0.34

0.50

0.48

0.46

0.44

0.42

0.40

nD
C

G
@

10
M

S
M

AR
C

O
C

lu
eW

eb
09

C
lu

eW
eb

12
nD

C
G

@
10

nD
C

G
@

10

Additive Aggregation Bradley-Terry Aggregation Greedy Aggregation PageRank Aggregation

Figure 4: Effectiveness measured as nDCG@10 on three corpora (ClueWeb09, ClueWeb12, MS MARCO) for each aggregator
and the two samplers G-Random and N-Window with different sampling rates. Dotted: pointwise re-ranking, dashed:
unsampled 𝐶all .

5.2 Evaluation of Ranking Effectiveness
To evaluate the effectiveness of different combinations of sampling
and aggregation methods on all three corpora, we simulate runs on
sparsified comparison sets at sample rates ranging from 0.05 to 0.95
in steps of 0.05. Each simulation is repeated ten times and the effec-
tiveness is averaged to account for random variation in both the
sampling and the aggregation step. In addition, baseline runs for
each aggregator use the full comparison sets 𝐶all per topic without
any sampling. In total, 4950 runs are simulated. The pointwise rank-
ing to be re-ranked by a pairwise model achieves nDCG@10 scores
of 0.38 (ClueWeb09), 0.49 (ClueWeb12) and 0.50 (MS MARCO).

Effectiveness of KwikSort. From the observations in Section 5.1
(low consistency and low transitivity), it is clear that KwikSort
with its pivot-based dynamic sampling of a rather “few” 𝑂 (𝑘 log𝑘)
comparisons will not be able to achieve a really good effectiveness.
Indeed, the nDCG@10 scores of KwikSort of 0.34 (ClueWeb09),
0.39 (ClueWeb12), and 0.42 (MS MARCO) are even lower than the
pointwise effectiveness. We tested different pivot selection methods

but all resulted in a similarly bad effectiveness. Using KwikSort for
pairwise rank aggregation can thus not be recommended in settings
with inconsistent and intransitive comparisons.

Effectiveness on the full comparison set 𝐶all . Figure 4 shows the
nDCG@10 of the non-KwikSort aggregation methods on each cor-
pus. The dotted and dashed horizontal lines indicate the baseline
effectiveness of the pointwise ranking and the pairwise re-ranking,
respectively, when using the respective aggregation method on the
complete comparison set 𝐶all without sampling. Since the point-
wise and the 𝐶all-aggregation effectiveness are thus independent
of the sampling rate, they are depicted as horizontal lines.

Using the full comparison set𝐶all without any sampling, greedy
aggregation yields the most effective re-rankings for the ClueWeb09
(Subplot 4c) and the MS MARCO passage corpus (Subplot 4g) while
additive aggregation is the most effective on the ClueWeb12 (Sub-
plot 4i). On MS MARCO (first row of Figure 4), all aggregation
methods are approximately equally effective when using the full
comparison set𝐶all (dashed lines show about the same nDCG@10).

Sparse Pairwise Re-ranking with Pre-trained Transformers ICTIR ’22, July 11–12, 2022, Madrid, Spain

0.70

0.65

0.60

0.55

0.50

0.45

Additive Aggregation Bradley-Terry Aggregation Greedy Aggregation PageRank Aggregation

Sample rate
0 0.2 0.4 0.6 0.8 1

Sample rate
0 0.2 0.4 0.6 0.8 1

Sample rate
0 0.2 0.4 0.6 0.8 1

Sample rate
0 0.2 0.4 0.6 0.8 1

nD
C

G
@

10
M

S
M

AR
C

O

Figure 5: nDCG@10 on MS MARCO for each aggregator at different sampling rates for S-Window , G-Random , and
N-Window . Dotted line: pointwise ranking, dashed line: effectiveness on unsampled 𝐶all .

On the ClueWeb corpora, though, PageRank aggregation is less
effective than the pointwise ranking (Subplots 4h and l; dashed line
below dotted line) and also Bradley-Terry aggregation struggles on
the ClueWeb12 (Subplot 4j). Only additive and greedy aggregation
always improve upon the pointwise ranking when using the full
comparison set 𝐶all (Subplots 4e, g, i, and k) but the improvement
is smaller on the ClueWeb corpora. That the effectiveness and the
improvement over the pointwise ranking are the highest on the
MS MARCO passage corpus is not surprising since the duoT5 re-
ranking model was trained on MS MARCO, and since the TREC
Web track relevance judgments used to evaluate the effectiveness
on the ClueWeb corpora are at the document level, while we only
rank one passage per document due to input length limitations.

Effectiveness with G-Random and N-Window sampling. The color-
coded curves in the plots of Figure 4 show the effectiveness of the
different aggregation methods with G-Random or N-Window sam-
pling at different sampling rates from the full comparison set 𝐶all .
Four trends are apparent across all corpora.

First, N-Window sampling results in less effective re-rankings
than G-Random sampling in nearly all cases, especially at smaller
sampling rates. This effect is particularly noticeable for additive
aggregation (Subplots 4a, e, and i). One reason probably is that
the more “local” comparisons of N-Window are likely to yield less
extreme comparison probability differences that decrease the over-
all separability of document pairs in sparse sampling setups. Also,
inconsistencies in pairwise judgments are more likely for “local”
pairs. Overall, this indicates that the global context of documents
(which is better represented by G-Random) is important to obtain
effective re-rankings via aggregation.

Second, greedy aggregation is the most effective aggregation
method for both, G-Random and N-Window sampling (comparing
Subplots 4c, g, and k to the rest). It is also the only aggregation
method for which the effectiveness on the full 𝐶all is reached by
some sparsified comparison sets.

Third, the effectiveness degradation is not linear with respect
to the sample rate (all subplots), but drops sharply below 15–20%.
This suggests a lower bound of comparisons needed to derive good
rankings from the pairwise comparisons of duoT5 which lack in
consistency and transitivity.

Fourth, Bradley-Terry- and PageRank-aggregated re-rankings of-
ten are the least effective (Subplots 4b, f, and j, as well as d, h, and l).
A possible reason for Bradley-Terry is similar to the bad effective-
ness of KwikSort-aggregated re-rankings: Bradley-Terry only takes
the direction of a comparison into account but not the magnitude
of the respective probability. With the inconsistent probabilities
of duoT5 that lead to inconsistent comparison directions, Bradley-
Terry cannot derive good final re-rankings—just like KwikSort. In
case of PageRank aggregation, also the inconsistent probabilities
that are used as edge weights, might “confuse” the actual derivation
of the PageRank scores.

Effectiveness with S-Window sampling. To find a good value for 𝜆
in S-Window sampling, we run a grid search over 𝜆 = 2 . . . 15, sepa-
rately for all sample rates (0.05 to 0.95 in steps of 0.05). We use five-
fold cross validation to determine the best choice on theMSMARCO
corpus, as the overall effectiveness gains on the ClueWeb corpora
were too small to meaningfully distinguish between setups. Fig-
ure 5 shows the nDCG@10 effectiveness on MS MARCO of the run
with the optimal 𝜆-value for each sample rate. The best runs for
G-Random and N-Window are also shown for reference.

Re-rankings aggregated from S-Window samples are more effec-
tive by a margin for each of the aggregation methods at all sam-
pling rates. The combination of S-Window sampling with greedy
aggregation allows for a rather stable effectiveness down to sam-
pling only 30% of the comparisons. Even when using an order of
magnitude fewer comparisons (i.e., ≈ 10% of 𝐶all), a competitive
effectiveness is achieved (nDCG@10 only 0.04 less).

The best values for 𝜆 are between 7 and 10 in most cases; they are
not correlated with the window size (Pearson’s 𝜌 = 0.04). Already
the better effectiveness of aggregated rankings using G-Random
sampling over N-Window sampling suggests that the global context
is important when sampling comparisons. Also the rather large best-
working 𝜆-values for S-Window sampling corroborate this since
even for small sample sizes𝑚 they ensure that the sampled com-
parisons cover a pretty “global” context. For large sample sizes𝑚,
𝜆 is not as important as the sample then already covers a larger
amount of the full comparison set 𝐶all .

ICTIR ’22, July 11–12, 2022, Madrid, Spain Lukas Gienapp, Maik Fröbe, Matthias Hagen, and Martin Potthast

Table 1: Effectiveness on theMSMARCO corpus as nDCG@10
for the full comparison set 𝐶all and the lowest similarly
effective sampling rate (non-significant nDCG@10 differ-
ence; delta in brackets) per sampling method and aggregator.
Bonferroni-correction for all (incl. hidden) tests per row.

Aggregator nDCG@10 Lowest Similarly Effect. Sampl. Rate

Unsampled𝐶all S-Window G-Random N-Window

Additive 0.691 0.35 (-0.014) 0.85 (-0.019) 0.95 (-0.004)
Bradley-Terry 0.691 0.50 (-0.012) 1.00 (-0.000) 0.90 (-0.008)
Greedy 0.707 0.30 (-0.013) 0.85 (-0.006) 0.50 (-0.010)
PageRank 0.695 0.30 (-0.016) 0.65 (-0.012) 0.95 (-0.004)

Minimal sampling rates. Table 1 shows the minimum attainable
sampling rates on the MS MARCO corpus for which each combina-
tion of sampling and aggregation method is not significantly less
effective in terms of nDCG@10 than the respective aggregation
on the full comparison set 𝐶all . Per aggregator, the difference of
the runs for each of the 19 sampling rates is tested against the run
that aggregates a ranking from the full comparison set 𝐶all using
a paired Student’s t-test with an 𝛼-level of 0.05 and Bonferroni
correction for the multiple tests. For G-Random with potentially
different effectiveness scores for the 10 runs per sampling rate, we
use the least effective run per sampling rate in terms of nDCG@10
to increase the overall confidence in case of observed differences.

Among the sampling strategies, S-Window achieves the by far
lowest sampling rates per aggregator without hurting the retrieval
effectiveness too much. About the same effectiveness is possible
with S-Window for additive, greedy, and PageRank aggregation
with just one third of the usually used unsampled comparisons.
G-Random and N-Window need more comparisons with any ag-
gregation method to achieve the same re-ranking effectiveness
and, in fact, only lead to some substantial savings compared to the
unsampled 𝐶all for PageRank aggregation (G-Random) or greedy
aggregation (N-Window).

Among the aggregation strategies, additive and Bradley-Terry
aggregation are the least effective and all sampling methods need
larger sample rates for Bradley-Terry than for the other aggregators.
Greedy aggregation leads to the best effectiveness and G-Random
and N-Window achieve their lowest sampling rates without effec-
tiveness loss for greedy aggregation.

Overall, the best combination in terms of effectiveness and sam-
pling rate is greedy aggregation with S-Window sampling: with
about one third of the usual 𝑘2 − 𝑘 comparisons, the best effective-
ness can be reached.

6 CONCLUSION
In this paper, we analyze several methods to substantially reduce
the quadratic number of document comparisons usually conducted
in pairwise re-ranking with transformers. To this end, we intro-
duce a sampling step at the beginning of the pairwise re-ranking
and adapt the aggregation step to derive relevance scores for a
re-ranking from smaller samples of the pairwise comparisons. By
comparing combinations of three sampling methods and five aggre-
gation methods, we show that only one third of the comparisons

are needed to achieve competitive re-ranking effectiveness and that
also an order of magnitude less comparisons still can yield only a
very slightly decreased effectiveness.

Compared to the usually applied additive rank aggregation with-
out sampling, our new combination of skip-window sampling with
greedy aggregation achieves an even better effectiveness at only
about one third of the comparisons. When tolerating a very slight
loss in effectiveness, even an order of magnitude fewer comparisons
suffice. The more local exhaustive window sampling method leads
to less effective rankings for which larger samples are needed than
for skip-window or a global random sample. This suggests that a
good sample of pairwise comparisons should not just sample from
a very local environment per rank in the pointwise ranking.

Sparsification in pairwise re-ranking opens up new areas of re-
search. Of the sampling paradigms evaluated (random vs. structured
and local vs. global), the global structured sampling works better
than the random one. Still, the samples are static in the sense that
the sample is pre-computed before aggregation. Dynamic sampling
techniques, in which new comparisons could be selected even dur-
ing aggregation could merit further analyses. Sparsification could
also be used to increase the depth of the pairwise re-ranking rather
than its efficiency. Instead of minimizing the comparison budget
for a fixed depth 𝑘 , a fixed comparison budget can be used to max-
imize 𝑘 . For example, the usually recommended depth 𝑘 = 50 re-
quires 2,450 comparisons (𝑘2−𝑘) for traditional pairwise re-ranking.
A sampling rate of 30% (or 10%) now allows a re-ranking depth
of 𝑘 = 90 (𝑘 = 157) for a budget of about 2,450 comparisons. This
may have a strong effect for recall-intensive retrieval tasks.

REFERENCES
[1] Alan Agresti and Maria Kateri. 2011. Categorical Data Analysis. In International

Encyclopedia of Statistical Science. Springer, 206–208.
[2] Nir Ailon, Moses Charikar, and Alantha Newman. 2008. Aggregating

Onconsistent Information: Ranking and Clustering. J. ACM 55, 5 (2008),
23:1–23:27.

[3] Juan A. Aledo, José A. Gámez, and Alejandro Rosete. 2021. A Highly Scalable
Algorithm for Weak Rankings Aggregation. Inf. Sci. 570 (2021), 144–171.

[4] Ralph Allan Bradley and Milton E Terry. 1952. Rank Analysis of Incomplete
Block Designs: The Method of Paired Comparisons. Biometrika 39, 3/4 (1952),
324–345.

[5] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. 2009. Overview of the
TREC 2009 Web Track. In Proc. of TREC 2009.

[6] Charles L. A. Clarke, Nick Craswell, Ian Soboroff, and Gordon V. Cormack. 2010.
Overview of the TREC 2010 Web Track. In Proc. of TREC 2010.

[7] Charles L. A. Clarke, Nick Craswell, Ian Soboroff, and Ellen M. Voorhees. 2011.
Overview of the TREC 2011 Web Track. In TREC’11.

[8] Charles L. A. Clarke, Nick Craswell, and Ellen M. Voorhees. 2012. Overview of
the TREC 2012 Web Track. In Proc. of TREC 2012.

[9] Stéphan Clémençon, Gábor Lugosi, and Nicolas Vayatis. 2008. Ranking and
Empirical Minimization of U-Statistics. The Annals of Statistics 36, 2 (2008),
844–874.

[10] William W. Cohen, Robert E. Schapire, and Yoram Singer. 1999. Learning to
Order Things. J. Artif. Intell. Res. 10 (1999), 243–270.

[11] Kevyn Collins-Thompson, Paul Bennett, Fernando Diaz, Charles L. A. Clarke,
and Ellen M. Voorhees. 2013. Overview of the TREC 2013 Web Track. In Proc. of
TREC 2013.

[12] Kevyn Collins-Thompson, Craig Macdonald, Paul Bennett, Fernando Diaz, and
Ellen M. Voorhees. 2014. Overview of the TREC 2014 Web Track. In Proc. of
TREC’14.

[13] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021.
Overview of the TREC 2020 Deep Learning Track. CoRR abs/2102.07662 (2021).

[14] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2020. Overview of the TREC 2019 Deep Learning Track. CoRR
abs/2003.07820 (2020).

[15] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Document Term Weighting
for Ad-Hoc Search. In Proc. of WWW 2020. ACM / IW3C2, 1897–1907.

Sparse Pairwise Re-ranking with Pre-trained Transformers ICTIR ’22, July 11–12, 2022, Madrid, Spain

[16] Roger Fletcher. 1987. Practical Methods of Optimization (2 ed.). John Wiley &
Sons, New York.

[17] Norbert Fuhr. 1989. Optimum Polynomial Retrieval Functions Based on the
Probability Ranking Principle. ACM Trans. Inf. Syst. 7, 3 (1989), 183–204.

[18] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Understanding BERT Rankers
Under Distillation. In Proc. of ICTIR 2020. ACM, 149–152.

[19] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with
Cross-Architecture Knowledge Distillation. CoRR abs/2010.02666 (2020).
arXiv:2010.02666

[20] Sebastian Hofstätter and Allan Hanbury. 2019. Let’s Measure Run Time!
Extending the IR Replicability Infrastructure to Include Performance Aspects. In
Proc. of OSIRRC@SIGIR 2019 (CEUR, Vol. 2409). CEUR-WS.org, 12–16.

[21] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-Based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (2002), 422–446.

[22] Marcin Kaszkiel and Justin Zobel. 1997. Passage Retrieval Revisited. In Proc. of
SIGIR 1997. ACM, 178–185.

[23] Yanyan Lan, Jiafeng Guo, Xueqi Cheng, and Tie-Yan Liu. 2012. Statistical
Consistency of Ranking Methods in A Rank-Differentiable Probability Space. In
Proc. of NeurIPS 2012. 1241–1249.

[24] Jimmy Lin. 2019. The Neural Hype, Justified! A Recantation. SIGIR Forum 53, 2
(2019), 88–93. https://doi.org/10.1145/3458553.3458563

[25] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained Transformers
for Text Ranking: BERT and Beyond. Synthesis Lectures on Human Language
Technologies 14, 4 (2021), 1–325.

[26] Tie-Yan Liu. 2011. Learning to Rank for Information Retrieval. Springer, Berlin
Heidelberg.

[27] Sean MacAvaney, Sergey Feldman, Nazli Goharian, Doug Downey, and Arman
Cohan. 2020. ABNIRML: Analyzing the Behavior of Neural IR Models. CoRR
abs/2011.00696 (2020).

[28] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation in
Information Retrieval using PyTerrier. In Proc. of ICTIR 2020. ACM, 161–168.

[29] Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing Order into Text. In
Proc. of EMNLP 2004. ACL, 404–411.

[30] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. CoRR abs/1611.09268 (2016).

[31] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020.
Document Ranking with a Pretrained Sequence-to-Sequence Model. In Proc. of

Findings EMNLP 2020. ACL, New York, 708–718.
[32] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-Stage

Document Ranking with BERT. CoRR abs/1910.14424 (2019), 1–13.
[33] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank Citation Ranking: Bringing Order to the Web. Technical Report.
[34] Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The

Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained
Sequence-to-Sequence Models. CoRR abs/2101.05667 (2021), 1–23.

[35] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers still
Outperformed by Gradient Boosted Decision Trees?. In Proc. ICLR 2021.

[36] Leonardo Rigutini, Tiziano Papini, Marco Maggini, and Franco Scarselli. 2011.
SortNet: Learning to Rank by a Neural Preference Function. IEEE Trans. Neural
Networks 22, 9 (2011), 1368–1380.

[37] Tetsuya Sakai. 2007. Alternatives to Bpref. In Proc. of SIGIR 2007. ACM, 71–78.
[38] Hal Stern. 1992. Are All Linear Paired Comparison Models Empirically

Equivalent? Mathematical Social Sciences 23, 1 (1992), 103–117.
[39] Hongyin Tang, Xingwu Sun, Beihong Jin, Jingang Wang, Fuzheng Zhang, and

Wei Wu. 2021. Improving Document Representations by Generating Pseudo
Query Embeddings for Dense Retrieval. In Proc. of ACL 2021. ACL, 5054–5064.

[40] Louis Thurstone. 1927. The Method of Paired Comparisons for Social Values.
The Journal of Abnormal and Social Psychology 21, 4 (1927), 384.

[41] Michael Völske, Alexander Bondarenko, Maik Fröbe, Benno Stein, Jaspreet
Singh, Matthias Hagen, and Avishek Anand. 2021. Towards Axiomatic
Explanations for Neural Ranking Models. In Proc. of ICTIR 2021. ACM, 13–22.

[42] Yue Wu, Tao Jin, Hao Lou, Pan Xu, Farzad Farnoud, and Quanquan Gu. 2021.
Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons. CoRR abs/2110.04136 (2021).

[43] Yu Xiao, Hongzhong Deng, Xin Lu, and Jun Wu. 2021. Graph-Based Rank
Aggregation Method for High-Dimensional and Partial Rankings. J. Oper. Res.
Soc. 72, 1 (2021), 227–236.

[44] Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin. 2020. Early Exiting BERT
for Efficient Document Ranking. In Proc. of SustaiNLP 2020. ACL, 83–88.

[45] Yue Zhang, ChengCheng Hu, Yuqi Liu, Hui Fang, and Jimmy Lin. 2021. Learning
to Rank in the Age of Muppets: Effectiveness–Efficiency Tradeoffs in
Multi-Stage Ranking. In Proc. of SustaiNLP 2021. ACL, 64–73.

[46] Ke Zhou, Gui-Rong Xue, Hongyuan Zha, and Yong Yu. 2008. Learning To Rank
With Ties. In Proc. of SIGIR 2008. ACM, New York, NY, USA, 275–282.

https://arxiv.org/abs/2010.02666
https://doi.org/10.1145/3458553.3458563

	Abstract
	1 Introduction
	2 Related Work
	3 Sparsified Pairwise Re-Ranking
	3.1 Sampling
	3.2 Aggregation
	3.3 Initial Retrieval and Re-ranking

	4 Experimental Setup
	4.1 Evaluation Measures
	4.2 Evaluation Data

	5 Evaluation Results
	5.1 Evaluation of Pairwise Prediction Properties
	5.2 Evaluation of Ranking Effectiveness

	6 Conclusion
	References

