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Abstract. We investigate the complexity of finding prime implicants
and minimal equivalent DNF's for Boolean formulas, and of testing equiv-
alence and isomorphism of monotone formulas. For DNF related prob-
lems, the complexity of the monotone case strongly differs from the ar-
bitrary case. We show that it is DP-complete to check whether a mono-
mial is a prime implicant for an arbitrary formula, but checking prime
implicants for monotone formulas is in L. We show PP-completeness of
checking whether the minimum size of a DNF for a monotone formula
is at most k. For k in unary, we show the complexity of the problem to
drop to coNP. In [Uma01] a similar problem for arbitrary formulas was
shown to be X5-complete. We show that calculating the minimal DNF
for a monotone formula is possible in output-polynomial time if and only
if P = NP. Finally, we disprove a conjecture from [Rei03] by showing that
checking whether two formulas are isomorphic has the same complexity
for arbitrary formulas as for monotone formulas.

1 Introduction

Monotone formulas are Boolean formulas that contain only conjunction and dis-
junction as connectives, but no negation. To solve the satisfiability problem for
monotone formulas is trivial. Every satisfiable monotone formula is satisfied by
the assignment that sets all variables to true. Hence, the computational com-
plexity of the satisfiability problem for monotone formulas is very much simpler
than the NP-complete satisfiability problem for arbitrary formulas. On the other
hand, counting the number of satisfying assignments has the same complexity for
monotone and for arbitrary formulas [Val79]. Hence, it is interesting to compare
the complexity of problems for arbitrary and for monotone formulas.

In the first part of this paper, we investigate the complexity of calculating
smallest equivalent Disjunctive Normal Forms (DNF). The smallest equivalent
DNF for a formula consists of prime implicants of the formula. For arbitrary
formulas, it is hard to find the smallest choice of prime implicants. It is still
open whether a smallest equivalent DNF can be calculated in polynomial space.
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For monotone formulas, the smallest DNF consists of all prime implicants. We
consider problems of checking and finding prime implicants (Section 3). We
show that checking whether a monomial is a prime implicant for a formula is
DP-complete for arbitrary formulas, whereas it is in L for monotone formulas.
DP [PY84] contains both NP and coNP and is contained in 5 in the Polynomial
Time Hierarchy. The question, whether a prime implicant of a certain size exists
for a given formula, was shown to be ¥5-complete in [Uma01]. We show that
the same question is only NP-complete for monotone formulas. The complexity
of calculating the size of a smallest DNF depends on the representation of the
problem. Umans [Uma01] showed that given a formula ¢ in DNF and an integer
k, it is X5-complete to decide whether ¢ has a DNF of size at most k. Notice
that the length of the input DNF is greater than the size of the DNF that is
searched for (except trivial cases). This seems necessary to allow the problem
to be decided within a non-deterministic polynomial time bound, because the
smallest DNF of a (monotone) formula may have size exponential in the length
of the formula. The exact complexity of this problem for arbitrary formulas is
open. It is ¥5-hard (which follows from [Uma01]) and in EXPTIME. For monotone
formulas, we exactly characterize the complexity of this problem by showing it
to be PP-complete. If one encodes the upper bound of the DNF length in unary
instead — i.e. given formula ¢ and string 1*, decide whether ¢ has a DNF of
size < k — we prove the problem to be X5-complete for arbitrary formulas, and
coNP-complete for monotone formulas.

In Section 4 we consider the hardness of calculating the smallest DNF for
a monotone formula. It is clear that the smallest DNF is not polynomial time
computable. Therefore, we consider the notion of output-polynomial time. A
function is in output-polynomial time if it can be computed in time polynomial
in the length of the input plus the length of the function value [Pap97]. We
show that the DNF for a monotone formula is output-polynomial time com-
putable if and only if P = NP. Even calculating the size of a minimal DNF
is shown to be PP-complete. In Section 5 we consider equivalence and isomor-
phism problems. The problem of deciding whether monotone formulas ¢ and
1 are equivalent is known to be coNP-complete [Rei03]. For arbitrary formu-
las the same completeness holds. If ¢ is in Conjunctive Normal Form (CNF)
and ® is in DNF, the equivalence problem remains coNP-complete for arbitrary
formulas, but for monotone formulas an upper bound between P and coNP-
complete was settled in [FK96]. In the case that one of the input formulas con-
sists only of terms of bounded length, we give an L-algorithm improving results
from [EG95, BEGKO0]. Finally, we refute a conjecture from [Rei03], by showing
that checking whether two given formulas are isomorphic has exactly the same
complexity for arbitrary as for monotone formulas.

2 Definitions

We consider Boolean formulas with connectives A (conjunction), V (disjunction),
and — (negation). We assume that the negations appear directly in front of



variables. (Other connectives are used as abbreviations, whereas we use the <
only once because of the doubling of the formula length.) Actually this is no
limitation because every formula may be transformed in polynomial time to fulfill
these assumptions. A monotone formula is a Boolean formula without negations.
A term is a conjunction or a disjunction of literals, i.e. of variables and negated
variables; a conjunction is called monomial, and a disjunction is called clause.
The empty clause is unsatisfiable, and the empty monomial, denoted A, is valid.
A monotone term is a term without negations. Terms are also considered as sets
of literals. Term T3 covers term 15 if T} C Ts.

An assignment A for a formula ¢ is a mapping of the variables of ¢ to the
truth values true and false. An assignment A is said to satisfy formula ¢ if ¢
evaluates to true under A. For monotone formulas we regard A also as a set A,
where variable x is in A,, if and only if x gets value true under A. Notice that
in this way every monotone monomial can also be interpreted as an assignment.

An implicant of a formula ¢ is a monomial C' such that C — ¢ is valid. A
monomial C' is a prime implicant of ¢ iff (1) C is an implicant of ¢ and (2) for
every proper subset S C C holds that S is not an implicant of . Notice that in
order to check condition (2) it suffices to check for C = {¢;, /s, ..., ¢} whether
for each ¢; € C it holds that C' — {¢;} is not an implicant of p. Every proper
subset S of C is a subset of C' — {¢;} for some i. For S C C — {/{;} holds that
(C—{¢;}) — S isvalid. If S is an implicant of ¢, then S — ¢ is valid. Both valid
formulas together yield that (C' — {¢;}) — ¢ is valid too, inducing that C' — {¢;}
is an implicant of ¢. Hence, if no C' — {¥¢;} is an implicant of ¢, then no proper
subset of C' is an implicant of ¢.

A formula is in conjunctive normal form (CNF) if it is a conjunction of
clauses. Similarly a formula is in disjunctive normal form (DNF) if it is a disjunc-
tion of monomials. It is said to be in k-CNF (k-DNF), if all clauses (monomials)
consist of at most & literals. A monotone formula ¢ in normal form is irredundant
if and only if no term of ¢ covers another term of . For a monotone formula, the
disjunction of all its prime implicants yields an equivalent monotone DNF. On
the other hand, every prime implicant must appear in every equivalent DNF for
a monotone formula. Hence, the smallest DNF for a monotone formula is unique
and equals the disjunction of all its prime implicants. This is not the case for
non-monotone formulas, where the smallest DNF is a subset of the set of all
prime implicants. It is NP-hard to select the right prime implicants [Mas79]. See
also [Cz099] for an overview on the complexity of calculating DNF's.

We use complexity classes L (logarithmic space), P, NP, coNP, DP (difference
polynomial time, which appears to be the class for “exact cost” optimization),
Y% (NP with NP oracle), PP (probabilistic polynomial time), and PSPACE. The

P
coNI\FI)P C DP C F%I% C PSPACE. All considered
classes except L are closed downwards under <? -reduction, and PP is closed
under complement. Closely related to PP is the function class #P. See [Pap94]
for definitions of these classes. As natural complete problems for NP, coNP and
PP we consider SAT (is the Boolean formula ¢ satisfiable?), UNSAT (is ¢ un-
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satisfiable?), and MAJSAT (do at least half of the assignments satisfy ©7?). We
assume that the input formulas for these problems contain only A, V, and —
(placed right in front of variables) as connectives.

3 Size of Disjunctive Normal Forms

In this section we concentrate on computing the size of minimal DNFs. Therefore
we first analyze the complexity of finding prime implicants.

A valid formula has the empty monomial A as its only prime implicant. An
unsatisfiable formula has no prime implicant at all. In general, a formula ¢ has a
prime implicant if and only if ¢ is satisfiable. Therefore, the question of whether
a formula has a prime implicant is NP-complete, and it is in L for monotone
formulas.

Next we consider the problem of deciding whether a monomial is a prime
implicant of a formula.

IsPRIMI : instance: Boolean formula ¢ and monomial C
question: is C' a prime implicant of ¢ ?
The complexity of ISPRIMI is intermediate between NP U coNP and 5.

Theorem 3.1. ISPRIMI is DP-complete.

Proof. The standard DP-complete problem is SAT-UNSAT = {(p,¥) | ¢ €
SAT, 1 € UNSAT}. We show that SAT-UNSAT <? IsPRIMI. The reduction func-
tion is the mapping (¢, %) — (—p V (— A 2), z), where z is a new variable that
neither appears in ¢ nor in . It is clear that this mapping is polynomial time
computable.

If (¢,1v) € SAT-UNSAT, then —) is valid, and therefore —¢) A z has z as
prime implicant. Hence z is an implicant of =@ V (-9 A z). Because ¢ € SAT, its
negation - is not valid. Therefore, the empty monomial A is not an implicant
of —p. Hence, z is a prime implicant of =V (=) A z). Next we consider the case
that (@, 1) & SAT-UNSAT. If ¢ & SAT, then = V (=) A z) is valid and A is the
only prime implicant of this formula. If ¢ € SAT and ¥ ¢ UNSAT, then —) is
not valid and therefore z is not an implicant of =) A z. Because = is not valid,
it follows that z is neither an implicant of —p V (- A 2).

This proves the DP-hardness of ISPRIMI. We now show that ISPRIMI is in
DP, by proving IsPRIMI <P, SAT-UNSAT. Let (¢, C') be an instance for ISPRIMI,
where C' = {{1,4s,...,£;} is a monomial. Let C'(i) = C' — {¢;}. First, a necessary
condition for C' being a prime implicant for ¢ is that no proper subset of C' is an
implicant for ¢ (C is called prime in this case). This condition is equivalent to
every C(i) being not an implicant for ¢ (as argued in Section 2). Le., for every ¢,
C(i) — @ is not valid, and equivalently —(C(i) — ¢) is in SAT. Summarized, if C
is a prime implicant for ¢, then p(yp, C) = /\f:1 =(C(i) — ¢) is in SAT. Second,
the other necessary condition for C' being a prime implicant for ¢ is that C' is
an implicant for . Le. C — ¢ is valid, and equivalently n(p, C) = —(C — ¢) is
in UNSAT.



C is a prime implicant for ¢ if and only if C is prime and C is an impli-
cant for ¢. This is equivalent to p(¢,C) € SAT and n(p,C) € UNSAT. Even-
tually, this yields that (p,C) € IsPrRiMI if and only if (p(p,C),n(p,C)) €
SAT-UNSAT. Since p and n are both polynomial time computable, the function
fwith f(p,C) = ((p(p, C),n(p,C)) is a polynomial time reduction function for
IsPriMI <P SAT-UNSAT. Since DP is closed downwards under polynomial time
many-one reduction, ISPRIMI € DP follows. O

For monotone formulas, the same problem is much easier. A monomial is an
implicant of a monotone formula, if and only if the assignment that corresponds
to the monotone monomial satisfies the formula. It can be checked in logarithmic
space whether an assignment satisfies a monotone formula.

ISPRIMIy,ep : instance: monotone formula ¢ and monotone monomial C
question: is C' a prime implicant of ¢ ?

Theorem 3.2. ISPRIMIon s in L.

The problem of checking whether a formula ¢ has a prime implicant of size at
most k was shown to be L5-complete [Uma01]. We show, that the same problem
for monotone formulas is NP-complete only.

PRIMISIZE oy, : instance: monotone Boolean formula ¢ and integer k
question: does p have a prime implicant consisting of at
most k variables?
In the following, we will define reductions that transform formulas into mono-
tone formulas, such that satisfying assignments of the basic formula are similar
to prime implicants of the monotone formula.

Definition 3.3. Let ¢ be a Boolean formula with connectives A\, V and -, and
variables x1, . .., Ty,. Remember that all negation signs appear directly in front of
variables. Then r(p) denotes the formula obtained by replacing all appearances
of —x; in ¢ by the new variable y; (for i = 1,2,...,n). Let c(p) denote the
conjunction \;—,(z; V y;) and d(p) denote the disjunction \/;—_,(z; A y;). The
formulas ¢ and ¢°? are defined as ¢ = (o) A c(p) and @ = ©°V d(p) =
(r(e) Ac(p) v d(p).

Since ¢¢ and ¢°? do not contain any negation signs, they are monotone
formulas. Let A be an assignment for ¢. Then A/, denotes the assignment A/, =
{z; | A maps z; to true} U{y; | A maps z; to false}. Such an assignment, which
contains exactly one from x; and y;, is called conform. Notice that there is a
one-to-one relation between assignments to ¢ and conform assignments to ¢°
and ¢,

Theorem 3.4. PRIMISIZE o, is NP-complete.

Proofsketch: PRIMISIZEop, 18 easily seen to be in NP. NP-hardness follows from
a reduction SAT <P PRIMISIZEyo,. The reduction function maps every SAT
instance ¢ with variables z1,...,z, to (¢%n). This reduction is polynomial
time computable. a



Since minimal DNFs of a formula are disjunctions of prime implicants, a
natural question arises. How hard is it to calculate the size of a minimal DNF?
The respective problem

MINDNFSIZEqyt : instance: Boolean formula ¢ in DNF and integer k&
question: does ¢ have a DNF with at most k occurences
of variables?

for arbitrary DNF formulas was shown to be £5-complete in [Uma01].

The monotone version — input is a monotone DNF-formula ¢ — is in L since
counting the length of the irredundant part of ¢ suffices and testing irredundancy
can be managed in logarithmic space.

If the input is an arbitrary formula, the problem is ¥5-hard (which follows
from the latter result from [Uma01]). Tt is clear that the problem is in EXPTIME,
but it is even not known whether the problem is in PSPACE. We show PP-
completeness when the input is monotone.

MINDNFSIZEyop : instance: monotone Boolean formula ¢ and integer k
question: does ¢ have a DNF with at most k occurences
of variables?

Theorem 3.5. MINDNFSIZEon s PP-complete.

Proof. A set Aisin PP, if there exists a polynomial time bounded non-determin-
istic machine M that on input z has at least as many accepting as rejecting
computation paths iff € A. The machine M is allowed to have accepting,
rejecting, and non-deciding computation paths. Our polynomial time machine
M that decides MINDNFSIZE 0, roughly works as follows. Consider input (¢, k).
Let [ be the maximum length of a monomial with variables from ¢. Then M
guesses a sequence w of [ + 1 bits. If the first bit of w equals 0, then it accepts,
if the remaining bits encode an integer < k — otherwise it halts non-deciding.
In this way, k accepting computation paths are produced. If w = 1v has first
bit 1, then M checks in polynomial time (Theorem 3.2) whether v encodes a
prime implicant (with variables in increasing order) for ¢. If not, then it halts
undecided. If yes, then this computation path splits in that many rejecting paths
as the monomial v has variables. The smallest DNF of a monotone formula
consists of all prime implicants of the formula. Hence, M on input (¢, k) has at
least as many accepting as rejecting computation paths if and only if ¢ has a
DNF with at most k& occurences of variables. This shows that MINDNFSIZEon
is in PP.

To show PP-hardness, we give a reduction MAJSAT <P MINDNFSIZEnon.
Consider an instance ¢ of MAJSAT where ¢ has n variables, and let ¢°¢ be as in
Definition 3.3. Observe that every prime implicant of ¢°® either is conform and
hence consists of n variables, or it is not conform and consists of two variables
xi, ;. If © € MAJSAT, then there are at least 27! satisfying assignments to
@. Every satisfying assignment of ¢ induces a conform prime implicant of (°?.
Every i € {1,2,...,n} induces the non-conform prime implicant x; A y;. Hence,
there are at least 2"~! conform and n non-conform prime implicants of ¢°.
Because the minimum DNF consists exactly of all prime implicants, it follows



that the minimum DNF of ©°? has size at least n-2" "1 +2-n. If ¢ & MAJSAT,
then the minimum DNF of ¢°? has size at most n- (2"~ —1)+2-n. The function
that maps ¢ to (p°¢,n- (27"t — 1)+ 2 n) is polynomial time computable, and
by the above observations it reduces MAJSAT to MINDNFSIZE,0n. Since PP is
closed under complement, the PP-hardness of MINDNFSIZE o, follows. O

Accordingly, we can show that the function that on input a monotone formula
 outputs the size of the smallest DNF of ¢ is #P-complete. In [Val79] it is shown
that computing the number of prime implicants of a monotone formula is #P-
complete. Our result extends the latter since it additionally takes the size of the
prime implicants into account.

Using a similar approach, one can show that counting satisfying assignments
for monotone formulas and counting prime implicants for monotone formulas
both are PP-complete. Notice that in [Val79] it is shown that given a monotone
formula in 2CNF (all clauses consist of at most two variables) the function that
calculates the number of satisfying assignments is #P-complete. From this result,
it only follows that the problem to decide whether a monotone formula in 2CNF
with n variables has at least 277! satisfying assignments is PP-complete under
polynomial time Turing reductions. Our approach yields PP-completeness under
the stronger polynomial time many-one reduction.

One of the main reasons that an analogue to Theorem 3.5 for arbitrary
formulas is unknown is the fact that polynomial time does not allow on input
©, k to guess a candidate for a DNF of length k. Therefore, we consider a variant
of MINDNFSIZE where k£ is given in unary.

MINDNFSIZE' : instance: Boolean formula ¢ and string 1%
question: does ¢ have a DNF with at most k occurences
of variables?

Theorem 3.6. MINDNFSIZE' is ¥5-complete.

Proof. MINDNFSIZEgy,s reduces to MINDNFSIZE' by the following function f.
Let |¢| denote the number of occurences of variables in ¢. If k > |¢|, then
(¢, k) € MINDNFSIZEqys and f(p, k) is some fixed element in MINDNFSIZE'. If
k < ||, then f(p,k) = (p,1%). Clearly, f is polynomial time computable and
reduces the problem MINDNFSIZEqns to MINDNFSIZE . MINDNFSIZE' € ZS can
be shown using the standard guess-and-check approach. ]

If we restrict the input to be monotone the complexity is lower.

MINDNFSIZE, . : instance: monotone Boolean formula ¢ and string 1%
question: does ¢ have a DNF with at most k occurences

of variables?

n

Theorem 3.7. MINDNFSIZE,, , is coNP-complete.

n

Proof. MINDNFSIZE, . is coNP-hard: A formula ¢ is unsatisfiable if and only if

mon
©°® has (z; Ay;) as its only prime implicants (where i = 1,2,...,n for z1,...,z,



are the variables of ¢). Hence, ¢ is unsatisfiable if and only if (p°?,127) €

MINDNFSIZE,,,,. This shows that MINDNFSIZE],,, is coNP-hard.
MINDNFSIZE,,,, € coNP: Consider the problem A = {(¢, 1¥)| the monotone

formula ¢ has a minimal DNF of size > k}. Note that A is the complement of
MINDNFSIZE], .. A is in NP since one has to guess a disjunction D of monomials
of size greater than k and less than k + |¢| and check that all are different
prime implicants for ¢. If so, then the minimal DNF for ¢ has at least the size
of D. Both the guess and the check are polynomial time computable. Hence,

MINDNFSIZE. € coNP. O

mon

4 Computing DNFs

A DNF of a formula is a disjunction of (prime) implicants. For monotone formu-
las, the minimal DNF is unique and it is the disjunction of all prime implicants.
In order to investigate the complexity of the search for all prime implicants, we
use the following problem MOREPRIMIyop. It has instances (@, S), where ¢ is a
formula and S is a set of monomials. A pair (¢, .S) belongs to MOREPRIMIy0p
if S is a proper subset of a minimal DNF of ¢. L.e., every monomial in S is a
prime implicant for ¢, but there is at least one more prime implicant for ¢ that
must be added to S in order to make S a DNF for ¢.

MOREPRIMIon :
instance: monotone Boolean formula ¢ and set S of monomials
question: is S a set of prime implicants of ¢ and p # S ?

Theorem 4.1. MOREPRIMIyo, 5 NP-complete.

There are monotone formulas whose minimal DNF have size exponential in
the size of the formula. Therefore it is clear that the DNF cannot be computed
in time polynomial in the length of the input. For such problems one would like
to have algorithms that run in time polynomial in the length of the input plus
the length of the output.

Definition 4.2. [Pap97] A function f can be computed in output-polynomial
time, if there is an algorithm A that for all x on input x outputs f(x) and there is
a polynomial q such that for all z, A on input x has running time q(|z|+|f(z)]).

An algorithm that cycles through all monomials and outputs those that are
prime implicants of the monotone input formula, eventually outputs the minimal
DNF of its input. For the special case of formulas that have long DNF's, this
algorithm can be seen to have running time polynomial in the length of the
output. For formulas with short DNFs, the running time of this straightforward
algorithm is exponential in the length of the output. Anyway, we show that we
cannot expect to find an algorithm that behaves significantly better than this
straightforward approach.

Theorem 4.3. The function that on input a monotone formula ¢ outputs the
smallest DNF for ¢ is in output-polynomial time if and only if P = NP.



Proof. Assume that A is an output-polynomial time algorithm for the consid-
ered problem, and let ¢ be the polynomial bounding the run time of A. We
show how to solve MOREPRIMIy,ey in polynomial time. For an instance (g, S)
of MOREPRIMIy, oy, first check whether S is a set of prime implicants for ¢, and
reject if this is not the case. Then start A on input ¢ for q(|p| + |S]) steps. If A
does not halt after ¢(|¢|+S|) steps, then S does not contain all prime implicants
of o, and our algorithm accepts. If A halts after ¢(|¢|+ |S|) steps, then accept if
and only if S is a proper subset of the output of A. It is clear that this algorithm
decides MOREPRIMIy, 0y . Its run time is bounded by the polynomial g, plus some
polynomial overhead. Since MOREPRIMIy,on is NP-complete (Theorem 4.1), it
solves an NP-complete problem in polynomial time, and therefore P = NP.

For the other proof direction, assume that P = NP. The set V = {(w, S, ¢) |
w is a prefix of a prime implicant C for ¢ and C' € S } is in NP. Our algorithm
that computes a minimal DNF of a monotone input formula ¢ starts with S
being the empty set, and uses V' as an oracle to make S the set of all prime
implicants of ¢ — and hence the minimal DNF of ¢ — using a prefix search
technique. Intuitively spoken, every query to V yields one bit for the output.
From P = NP it then follows that the algorithm runs in output-polynomial
time. a

Notice that a similar result is not known for arbitrary formulas.

As a final remark we return to the complexity of MOREPRIMIyon (Theo-
rem 4.1). We have seen that the complexities of ISPRIMIpy,o, (Theorem 3.2) and
MOREPRIMIy, oy, differ. This is not the case for the corresponding non-monotone
problems ISPRIMI (Theorem 3.1) and MOREPRIMI.

Theorem 4.4. MOREPRIMI is DP-complete.

5 Equivalence and Isomorphism of Monotone Formulas

Deciding equivalence for arbitrary Boolean formulas is coNP-complete. The same
holds for monotone formulas [Rei03]. However, if the monotone input formulas
are given in k-CNF and DNF it is known that the problem is in P [EG95], even
in RNC [BEGKO00]. We improve these results by showing that logarithmic space
suffices.

MONE¢onst: tnstance: irredundant, monotone Boolean formulas ¢ in
k-CNF for a constant k£ and 1 in DNF
question: are p and ¥ equivalent?

Theorem 5.1. MONEonst € L.

Two Boolean formulas ¢ and ¢ are isomorphic if and only if there exists a
permutation — a bijective renaming — 7 of the variables such that ¢ and 7(¢)
are equivalent. Two Boolean formulas are congruent if they are isomorphic after
negating some of the variables. For example 1 Ax2 and —x3 A x4 are congruent.
Such a negation of some variables with the bijective renaming of the variables is



called n-permutation. A witness for the congruence of the above example is the
n-permutation 7 that exchanges —x3 and z; as well as x4 and xs.

We want to compare the problem of testing isomorphism for monotone Bool-
ean formulas to the case of abitrary Boolean formulas. This provides a negative
answer to a conjecture from [Rei03].

BOOLISOyon: instance: monotone Boolean formulas ¢ and ¢
question: are ¢ and 1 isomorphic?

Booulso: instance: Boolean formulas ¢ and 1)
question: are o and v isomorphic?

BooLCon:  instance: Boolean formulas ¢ and ¢
question: are o and v congruent?

Note that BoOoLCON is polynomially equivalent to BoorLIso [BRS98].
Theorem 5.2. BOOLISOmen =2, BOOLISO.

Proof. To show BOOLISOy,on <P, BOOLISO we can choose the identy function
as reduction function. We now show BooLISO <? BOOLISOpe,. In [BRS98] it
was shown that BooLIso <P BooOLCON. Therefore, it suffices to show that
BooLCON <P BOOLISOy,on. The reduction function maps the instance (¢, )
of BOOLCON to the pair (¢°?,1°?) (cf. Definition 3.3). We have to show (i, 1) €
BoOLCON & (¢4 1)°?) € BOOLISOmon.

(¢,9) € BOOLCON = (¢4, 1°?) € BOOLISOmen: Let (¢,v) € BooLCON by
an n-permutation 7. Hence, ¢ and 7(¢)) are equivalent. We derive a permutation
7 for (4,14 from the n-permutation 7 in an elementary way. If m exchanges
x; with x;, then 7 exchanges x; with x; as well as y; with y;. And if 7 exchanges
x; with —z;, then 7 exchanges z; with y; as well as y; with x;. Note that 7
does not make any remarkable changes on the c(1)- and d(1)-part of ¥°? other
than rearranging the terms in c(+) and d(v)). We have to prove that ¢°¢ and
7 (p°?) are equivalent and proceed by case differentiation of all possible monotone
assignments.

Ji[z;,yi € Am]: Such assignments satisfy ¢°? and 7(¢°?) by satisfying the
conjunction (z; A y;).

(—Fi[zi, yi € Anl) A (T, y; € Am]): None of the conjunctions of d(¢) and
d(v) are satisfied by A,,. Furthermore the disjunction (z; Vy,) in ¢(¢) and ¢(y))
is not satisfied by A,, and consequently ¢°@ and 7(1)?) are not satisfied.

It remains to verify the conform assignments: These are assignments that
contain only one of the variables z; and y; for every i < n. They do not satisfy
d(p) and d(v) but do satisfy ¢(p) and ¢()). It remains to check () and 7 (r(¢))).
From the facts that ¢ and 7(¢) are equivalent and a conform assignment for ¢°
and 7(°?) just simulates an assignment for ¢ and () it follows that the truth
tables of p°? and 7(¢°?) are identical in this case. Thus the truth tables of °?
and 7(1)°?) are identical with respect to all possible assignments and therefore
©°@ and ¢°? are isomorphic.

(p,1) € BOOLCON <« (o ) € BOOLISOmon: A permutation 7 for
(¢°?,9°4) € BOOLISOmon is called proper if and only if (1) whenever x; and



x; are exchanged, then so are y; and y;, and (2) whenever x; and y; are ex-
changed, then so are y; and x;.

Claim. For all (gp"’d,w“l) € BooLISOyon with more than two z-variables there
is a proper permutation 7, that ensures the equivalence of ¢°¢ and 7, (¢¢).

Proof. Suppose that the proposition of the claim does not hold. Then there exists
a pair of formulas (¢52 ,1¢%) € BOOLISOmen With more than two z-variables for
which no proper permutation exists. As a consequence ¢ and 7, (¥5%) are
equivalent for some improper permutation 7;,,. We distinguish between the two
cases of T, being improper.

Ji[7sm exchanges x; with x; but not y; with y;]: Hence, 7;p, exchanges y;
with b € {ag : k <n,k # 5} U{yr : k < n,k # j}. We examine the assignment
Ay, = {x;,b}. The conjunction (z; Ab) in 7m (d(¢)) is satisfied by A, and so
is im (152). But A, does not satisfy ¢¢¢. Note that the conjunction (x; A b)
is not present in d(yp) and therefore A,, cannot satisfy d(¢). Furthermore not
all of the disjunctions of ¢(y) contain z; or b because there are more than two
z-variables in p$¢ and ¢4, Thus the two formulas ¢§%, and 7, (1¥$%) cannot
be equivalent. This is a contradiction to our assumption.

3i[7im exchanges x; with y; but not y; with ;]: An analogous argumentation
as above shows that the formulas p¢% and 7, (¥$2) cannot be equivalent. This
is a contradiction to our assumption. Hence, the claim follows.

As a consequence, there is a proper permutation 7, for every (o4, 9pcd) €
BOOLISOmon. A proper permutation only works on the 7(¢)-part of the 1)¢d-
formula and only rearranges the terms in ¢(¢) and d(¢). Given a proper per-
mutation 7, we can easily derive an n-permutation = for (¢, 9). If 7, exchanges
x; with z; as well as y; with y;, then 7 exchanges z; with z;. And if 7, ex-
changes x; with y; as well as y; with z;, then 7 exchanges x; with —z;. Since
the y-variables are placeholders for the negative literals, we see that = ensures
(p,9) € BooLCON. This concludes the proof of BOOLCON <2 BOOLISOmon-

Thus we have established BooLIso =P, BOOLISOpen- O

In [ATO0] it is shown that BOOLISO is not complete for X5 unless the Poly-
nomial Time Hierarchy collapses. As a consequence of Theorem 5.2, this holds
for BOOLISOon as well.

6 Concluding Remarks

We compared the complexity of problems related to the construction of Disjunc-
tive Normal Forms for non-monotone and monotone formulas. We proved that
finding an algorithm that computes a minimal DNF for a monotone formula in
output-polynomial time is the same as solving P = NP. A similar result for arbi-
trary formulas is still open. Anyway, we assume that at least P = PSPACE is the
consequence. Although we proved that calculating the size of a minimal DNF for
a monotone formula is PP-complete (resp. #P-complete), even a PSPACE upper
bound for the non-monotone case is open.



Some problems for formulas are easier to decide in the monotone case than
for arbitrary formulas. Among them are finding prime implicants (NP- vs. X5-
complete) and calculating the size of a smallest equivalent DNF (PP-complete
vs. unknown). On the other hand, there are problems whose complexity stays the
same for monotone formulas. We could show this polynomial time equivalence
for isomorphism testing and counting satisfying assignments.

Deciding equivalence for monotone formulas is coNP-complete [Rei03] like it
is for Boolean formulas. Nevertheless we were able to prove a log-space upper
bound for the special case MONEost of equivalence testing. The complexity of
the general problem MONE without a constant bound for the clause size (which
is equivalent to MOREPRIMIy,on for instances (¢, S) with ¢ in CNF) remains
open.
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