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Summary. Cluster analysis technology often grapples with high-disienal and noisy data.
The paper in hand identifies sparsification as an approactid@ss this problem. Sparsifi-
cation improves both the runtime and the quality of clustgodthms that exploit pairwise
object similarities, i.e., that rely on similarity grapl®parsification has been addressed in the
field of graphical cluster algorithms in the past, but theali@wed approaches leave the burden
of parameter tuning to the user. Our new approach to spatsificrelies on the inherent char-
acteristics of the data and is completely unsuperviseealls to significant improvements in
the cluster quality and outperforms even the optimum supetdvapproaches to sparsification
that rely on a single global threshold.
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1 Introduction and Related Work

Cluster analysis deals with the problem of finding naturalugs in large sets of
data. Extensive discourses on clustering techniques gaem g [3, 6, 8, 15]. For
the purpose of this paper it is sufficient to distinguish kestw clustering techniques
that are based on a similarity graph versus techniques tea&x@mplar-based. The
contribution of our research is to the former class of athons. Figure 1 provides
an overview of algorithms that are based on similarity geaph

To motivate sparsification as a vital part of cluster analysbnsider the concep-
tual model of a cluster analysis process shown in Figure 2. Similarity graph
G of a set of object®D = {01,09,...,0,} is derived by estimating the simi-
larities between all pairs of objects. Similarities betweeal-world objects such
as documents cannot be assessed directly (unless done nhbot require a
model formation or feature extraction step, resulting ireeaf objectrepresenta-
tions X = {x1,x2,...,Xm}. Avectorx; € X corresponds ta features of an ob-
jecto; and comprises the respective feature weightssies (w;, , wi,, . .., w;, )’
A similarity function s(x;,x;) — [0, 1] is applied to all pairs inX to construct
the raw similarity grapi:’. If the model formation step is adequaté! resembles

L In the sense of Minsky [11]k; can answer the interesting question ahgut
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Fig. 1. Taxonomy of cluster algorithms using similarity graphs.

the similarity graphGG of the real-world object®). However, the indirection shown
in the upper part of Figure 2 introduces undesired imprenisiFor example, im-
precision is introduced in the course of feature selectieature computation, or
similarity quantification. Hence the raw similarity gragh models the similarities
between the real-world objedfs only approximately. Note that a cluster algorithm
takes the similarity scores i@’ at face value and runs the risk to make wrong deci-
sions, especially in tie situations. Here sparsificatiomes into play. By modifying
the raw similarity grapltz’, a smart sparsification obtains a more veritable similarity
graphG.

In[9, 10], Kumar and Luxburg report on two major approacloesarsification.
The first one uses a global thresheldo eliminate all edges with a similarity score
below this value. As will be discussed in greater detail iratler 2, this approach
has its major drawback in disregarding regions of variablesity in the object space.
The second approach to sparsification is more sensiblesdadis all edges af’
that are not among thie strongest edges of a node. Several variants of this nearest
neighbor sparsification are discussed in [2, 5, 7]. Whileeganeighbor sparsifica-
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Fig. 2. Cluster analysis. A 4-step conceptual model.



Unsupervised Sparsification of Similarity Graphs 3

tion longs for different regions in the document space, ihes at the price that the
parametef: is application-dependent and has to be chosen carefully.

Our new approach to sparsification adapts itself in an unsigssl manner. It
computes an expected similarity score for every edge inithehy=’, and only sim-
ilarity scores surpassing this expectation remain in tivengd-out grapltz. To ex-
amine the potential of our idea, we conduct two experimentfoar collections of
text documents. In the first experiment the accuracy of oarssfication technique
is compared to the best performing approach that uses alghueshold. In the
second experiment raw and thinned-out similarity grapbsaaalyzed by a density-
based cluster algorithm in order to evaluate the gain irtetirgy quality achieved by
sparsification. The results of our experiments are promisirevery respect: sparsi-
fication increases the quality of the clusterings. Even maue approach excels in
every experiment even the optimum sparsification thats@liea global threshold.

The organization of the paper is as follows. Section 2 givésfanition of spar-
sification in the context of cluster analysis and preseresgw unsupervised spar-
sification approach. Section 3 reports on the experiments.

2 Sparsification

In the field of computational theory, sparsification is ursti@od as a technique to
guarantee a desired time bound when designing dynamicitlgr [1]. In cluster
analysis research, improving the efficiency of an approaatf interest as wef,
but sparsification is also used to enhance the clagtelity. Kumar states the goal of
sparsification as the “efficient and effective identificatad the core points belonging
to clusters and subclusters” [9]. This definition, thougs@able, is closely related
to the author’'s approach to graphical clustering. Here vep@se a more general
definition in the context of cluster analysis:

Sparsification is the interpretation of the similarity seerin the feature
space in order to enhance the quality and the effort of theteluforma-
tion task.

Ideally, sparsification switches the similarity scores dfjes between two clusters
(inter-class edges) to zero, while setting the edge scoithinvelusters (intra-class
edges) to 1. Let(o;) — {1,...,1} assign the true class label to each objeet O.
Then, the optimum sparse similarity gra@Hulfills the following condition:

1, if ¢(0;) = c(oj)
¢(0i,05) = .
0 otherwise

wherep(o;, 0;) denotes the similarity between two real-world objects. pgmum
similarity graph is only of theoretical interest since ifjuéres unavailable knowledge
about the true class labels. Existing approaches to sgaitsiin work out a notion

2 E.g., spectral clustering is efficient only with sparse feas [10].
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Fig. 3. Two different regions in the object space. The dense clsisterthe right-hand side
could be thinned-out effectively by applying a thresholfleeting the minimum inter-class
distance. Within the cluster on the left, however, this shiid would eliminate all intra-class
edges. A convincing result is obtained by constructing thetual 3-nearest neighbor graph
(illustrated by the indicated edges). Every node has at tewsintra-class edge; all inter-class
edges are discarded.

of probability that two objects belong to the same class. Oiderlying principle is
the nearest neighbor principle. It states that if an objeptesentatio; is more
similar to a representatiat, than to another representatigg, then the probability
thatxo belongs to the same classsasshould be higher than the probability that
belongs to the same classsas

s(x1,X2) > s(x1,%x3) <  P(c(o1) = ¢(o2)) > P(c(or) = c(o3))

Upon this supposition several approaches, including duange been suggested.

2.1 Existing Approaches

The most common approach to sparsification is the use of aglateshold-. Every
similarity score below the threshold is discarded from thelarity graph. While this
approach can be applied efficiently it has two serious drakdhdarirst, the thresh-
old’s optimum value varies under different sets of objeats laas to be found empir-
ically. Second, applying one global threshold does not aettor different regions
in the object space. As illustrated in Figure 3 one has to wuifie clusters where
objects are connected much loser compared to other clubtessch a situation the
upper bound for the threshold is determined by the clustdreofowest density.

The second approach to sparsification relies on the cotistnuaf a k-nearest
neighbor graph ofy’. The k-nearest neighbor graph retains those edges which are
among the heaviedt edges of a node (= link to the nearest neighbors). Several
variants of this algorithm exist. The mutuainearest neighbor graph is constructed
by discarding each edge for which the incident nodes are mong thek nearest
neighbors of each other. Another interesting variant iedathared nearest neighbor
graph, where the edges of an ordin&rgearest neighbor graph are weighted accord-
ing to the number of neighbors the incident nodes have in comrAs illustrated
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in Figure 3 ak-nearest neighbor graph is able to retain regions of diffiedensity

in the object space. The main problem is the proper adjustofehe parametek.
And, since the optimurk heavily depends on the (unknown) number and size of the
classes, even finding a limiting range of promising choisedifficult. Ert6z et al.
state [2]:

“The neighborhood list sizek, is the most important parameter as it de-
termines the granularity of the clusters. #fis too small, even a uniform
cluster will be broken up into pieces due to the local vadas in the simi-
larity [...]. On the other hand, i is too large, then the algorithm will tend
to find only a few large, well-separated clusters, and snoalél variations
in similarity will not have an impact”

Hence, the construction of a suitable sparse similaritplgraquires the generation
and evaluation of a huge number of candidates. Note thak than the runtime, the
identification of a sensible internal evaluation measurt@éslimiting factor in this
connection.

2.2 An Object-specific, Unsupervised Approach to Sparsifidaon

Our goal is to provide a completely unsupervised approadpéusification, while
striving for the performance of the existing supervisedrapphes.To achieve this
we claim that two objects in the thinned-out gra@hare only allowed to share an
edge, if the probability that they belong to the same clustaigh. In particular we
propose that the following relation must hold:

P(e(01) = ¢(02)) > max{P(c(01) = ¢(0rana)), P(c(02) = c(0rand))},

with 0,ana € O\ {01,02}. l.e., the probability that two objects; andos, belong
to the same cluster must exceed the probabilities that samdomly drawn object
from O belongs to the same cluster @sor o,. Given this postulation, the nearest
neighbor principle is used to establish a relation concegrttie similarity scores of
the corresponding object representations:

s(x1,x2) > max{s(x1,X), s(x2,X)},

whereXx is a virtual object representation reflecting the charésttes of the object
set. It comprises the average weights of all object reptatens inX:

T Yoo Wi
X = (Wy,...,W,)" With w; = ==—>=.
m

If the similarity score of two object representations doesexceed the postu-
lated score, the respective edge is classified as an irsss-eddge and is discarded.
Altogether, the decision rulg for unsupervised sparsification reads as follows:

s(x1,x2), if s(x1,x2) > max{s(x1,X), s(x2,X)}

0 otherwise

@(017 02) = {
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The decision rule above yields convincing results in oursfieation experi-
ments. Nevertheless, cluster algorithms that are extyesgglsitive to noise benefit
from a more exhaustive sparsification. To account for this rotion ofsignificance
is introduced into the formula by modifying the virtual objeepresentatio®. In
the following formula the maximum weight of each featurg is considered as an
upper bound, and the harmonic mean between this bound armd¢haged feature
weight is computed:

T 2-wi Wi

R = (@1,...,0,)7 with @ =

w; +w;
The corresponding stricter decision ryke which accounts for significance, is
derived by substituting for X in the decision rulés.

3 Evaluation

To evaluate the performance of our unsupervised approaspdrsification, 4 test
collections were constructed from the Reuters news cor@s1§12]. The collec-
tions vary with respect to the number of documents, the nurabeategories, as
well as by the way the documents are distributed across #sse$ (cf. Table 1).

Table 1. Properties of the 4 test collections. Based on the first ciidle, one attribute at a
time is altered in the subsequent collections.

Collection Categories Documents Distribution

1 4 10.000 random
2 4 10.000 uniform
3 4 2.000 random
4 10 10.000 random

The documents are represented using the vector space mitdeiavmalized
tf -feature-weights [14], having applied Porter stemming stogpword elimination.
The similarity between two documents is computed as the dmtyzt of their rep-
resentations. The nonzero similarity scores are manualfiget! into intra-class and
inter-class scores.

In the first experiment we are interested in the accuracy ofapproach. It is
specified in terms of thé'-measuref’ = %m While precisionde-
notes the proportion of intra-class edges in the thinnadyocaph,recall is deter-
mined by the proportion of intra-class edges retained. Tlhbay threshold spar-
sification that classifies the edges best (= higliésheasure) is identified by an
exhaustive search and is compared to the results obtainedrynsupervised ap-
proach. The average results of the experiment are shownlim®a4 of Table 2. Our
unsupervised sparsification approach with the virtual @bjgRow 3) outperforms
sparsification with the optimum global threshold (Row 2).
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Table 2. Averaged results of the experimental analysis. The firsthedecond row show the
results with the minimum and the optimum global threshokpeetively. The third and the
fourth row report on our unsupervised approach, employtiregvirtual documentx andx.
Column 4 reports on th&-measure in the first experiment (sparsification task), iflgmost
column reports on the quality of the clusterings produceajorClust.

Approach % of retained % of discarded F-measure  F-measure
intra-class edges inter-class edges (sparsification) stéring)
7" =0.075 59.9% 83.0% 0.59 0.61
%} 66.8% 85.9% 0.63 0.68
) 37.4% 97.4% 0.50 0.76

In the second experiment the thinned-out similarity gragtesgiven to Major-
Clust, a representative of the density-based cluster fdiemparadigm (cf. Figure 1).
Here we use the classification-orientBemeasure, described, e.g., in [13], to deter-
mine the quality of the resulting clusterings. The averaggilts are shown in the
rightmost column of Table 2. The first row serves as a baselivese values are
achieved by applying the maximum global threshold thatimst&00% of the intra-
class edges. Note that sparsification in general raisedubktecquality. Comparing
the different approaches to sparsification, our unsupethapproach with the virtual
objectx again outperforms the global threshold sparsificatiorregtingly, sparsifi-
cation with the virtual objeck, which retains only 37.4% of the intra-class edges but
discards 97.4% of the inter-class edges, attains the hHigheser qualities (Row 4).

4 Conclusion

The main contribution of this paper is a new, unsupervis@daach to sparsification.
We argue that existing cluster analysis technology is stte&ined with the amount of
noise that is typical for most categorization and clasdificetasks, e.g., in informa-
tion retrieval. A preprocessing of the similarity graphliretform of a sparsification
step considerably improves the cluster performance.

The outstanding property of the proposed rule is the coraiida of the spe-
cific similarity distributions within the set of objects, Wdbeing parameterless at
the same time. Our analysis shows that even sparsificatitmtiaé optimum global
threshold is outperformed. Recall in this context that a parison to the optimum
threshold is only of theoretical interest: in practical Bgations, cluster analysis hap-
pens unsupervised, and the optimum threshold is not at fé&sifact underlines the
impact of the proposed strategy.

A still unanswered research question is the performancaidpproach in com-
parison to &-nearest neighbor approach. A preliminary evaluation adlendocu-
ment sets (up to 2000 documents) revealed, that our unsspdrapproach to spar-
sification is as effective as the best performing muft:akarest neighbor graph in
86% of 126 different cases [4].
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