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Summary. Cluster analysis technology often grapples with high-dimensional and noisy data.
The paper in hand identifies sparsification as an approach to address this problem. Sparsifi-
cation improves both the runtime and the quality of cluster algorithms that exploit pairwise
object similarities, i.e., that rely on similarity graphs.Sparsification has been addressed in the
field of graphical cluster algorithms in the past, but the developed approaches leave the burden
of parameter tuning to the user. Our new approach to sparsification relies on the inherent char-
acteristics of the data and is completely unsupervised. It leads to significant improvements in
the cluster quality and outperforms even the optimum supervised approaches to sparsification
that rely on a single global threshold.
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1 Introduction and Related Work

Cluster analysis deals with the problem of finding natural groups in large sets of
data. Extensive discourses on clustering techniques are given in [3, 6, 8, 15]. For
the purpose of this paper it is sufficient to distinguish between clustering techniques
that are based on a similarity graph versus techniques that are exemplar-based. The
contribution of our research is to the former class of algorithms. Figure 1 provides
an overview of algorithms that are based on similarity graphs.

To motivate sparsification as a vital part of cluster analysis, consider the concep-
tual model of a cluster analysis process shown in Figure 2. The similarity graph
G of a set of objectsO = {o1, o2, . . . , om} is derived by estimating the simi-
larities between all pairs of objects. Similarities between real-world objects such
as documents cannot be assessed directly (unless done by human) but require a
model formation or feature extraction step, resulting in a set of objectrepresenta-
tionsX = {x1,x2, . . . ,xm}. A vectorxi ∈ X corresponds ton features of an ob-
jectoi and comprises the respective feature weights, i.e.,xi = (wi1 , wi2 , . . . , win

)T .
A similarity function s(xi,xj) → [0, 1] is applied to all pairs inX to construct
the raw similarity graphG′. If the model formation step is adequate,1 G′ resembles

1 In the sense of Minsky [11]:xi can answer the interesting question aboutoi.
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Fig. 1. Taxonomy of cluster algorithms using similarity graphs.

the similarity graphG of the real-world objectsO. However, the indirection shown
in the upper part of Figure 2 introduces undesired imprecision. For example, im-
precision is introduced in the course of feature selection,feature computation, or
similarity quantification. Hence the raw similarity graphG′ models the similarities
between the real-world objectsO only approximately. Note that a cluster algorithm
takes the similarity scores inG′ at face value and runs the risk to make wrong deci-
sions, especially in tie situations. Here sparsification comes into play. By modifying
the raw similarity graphG′, a smart sparsification obtains a more veritable similarity
graphG.

In [9, 10], Kumar and Luxburg report on two major approaches to sparsification.
The first one uses a global thresholdτ to eliminate all edges with a similarity score
below this value. As will be discussed in greater detail in Chapter 2, this approach
has its major drawback in disregarding regions of variable density in the object space.
The second approach to sparsification is more sensible. It discards all edges ofG′

that are not among thek strongest edges of a node. Several variants of this nearest
neighbor sparsification are discussed in [2, 5, 7]. While nearest neighbor sparsifica-
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Fig. 2. Cluster analysis. A 4-step conceptual model.
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tion longs for different regions in the document space, it comes at the price that the
parameterk is application-dependent and has to be chosen carefully.

Our new approach to sparsification adapts itself in an unsupervised manner. It
computes an expected similarity score for every edge in the graphG′, and only sim-
ilarity scores surpassing this expectation remain in the thinned-out graphG. To ex-
amine the potential of our idea, we conduct two experiments on four collections of
text documents. In the first experiment the accuracy of our sparsification technique
is compared to the best performing approach that uses a global threshold. In the
second experiment raw and thinned-out similarity graphs are analyzed by a density-
based cluster algorithm in order to evaluate the gain in clustering quality achieved by
sparsification. The results of our experiments are promising in every respect: sparsi-
fication increases the quality of the clusterings. Even more, our approach excels in
every experiment even the optimum sparsification that relies on a global threshold.

The organization of the paper is as follows. Section 2 gives adefinition of spar-
sification in the context of cluster analysis and presents the new unsupervised spar-
sification approach. Section 3 reports on the experiments.

2 Sparsification

In the field of computational theory, sparsification is understood as a technique to
guarantee a desired time bound when designing dynamic algorithms [1]. In cluster
analysis research, improving the efficiency of an approach is of interest as well,2

but sparsification is also used to enhance the clusterquality. Kumar states the goal of
sparsification as the “efficient and effective identification of the core points belonging
to clusters and subclusters” [9]. This definition, though reasonable, is closely related
to the author’s approach to graphical clustering. Here we propose a more general
definition in the context of cluster analysis:

Sparsification is the interpretation of the similarity scores in the feature
space in order to enhance the quality and the effort of the cluster forma-
tion task.

Ideally, sparsification switches the similarity scores of edges between two clusters
(inter-class edges) to zero, while setting the edge scores within clusters (intra-class
edges) to 1. Letc(oi) → {1, . . . , l} assign the true class label to each objecto ∈ O.
Then, the optimum sparse similarity graphG fulfills the following condition:

ϕ(oi, oj) =

{
1, if c(oi) = c(oj)

0 otherwise,

whereϕ(oi, oj) denotes the similarity between two real-world objects. Theoptimum
similarity graph is only of theoretical interest since it requires unavailable knowledge
about the true class labels. Existing approaches to sparsification work out a notion

2 E.g., spectral clustering is efficient only with sparse matrices [10].
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Fig. 3. Two different regions in the object space. The dense clusters on the right-hand side
could be thinned-out effectively by applying a threshold reflecting the minimum inter-class
distance. Within the cluster on the left, however, this threshold would eliminate all intra-class
edges. A convincing result is obtained by constructing the mutual 3-nearest neighbor graph
(illustrated by the indicated edges). Every node has at least one intra-class edge; all inter-class
edges are discarded.

of probability that two objects belong to the same class. Theunderlying principle is
the nearest neighbor principle. It states that if an object representationx1 is more
similar to a representationx2 than to another representationx3, then the probability
thatx2 belongs to the same class asx1 should be higher than the probability thatx3

belongs to the same class asx1:

s(x1,x2) > s(x1,x3) ⇔ P (c(o1) = c(o2)) > P (c(o1) = c(o3))

Upon this supposition several approaches, including ours,have been suggested.

2.1 Existing Approaches

The most common approach to sparsification is the use of a global thresholdτ . Every
similarity score below the threshold is discarded from the similarity graph. While this
approach can be applied efficiently it has two serious drawbacks. First, the thresh-
old’s optimum value varies under different sets of objects and has to be found empir-
ically. Second, applying one global threshold does not account for different regions
in the object space. As illustrated in Figure 3 one has to copewith clusters where
objects are connected much loser compared to other clusters. In such a situation the
upper bound for the threshold is determined by the cluster ofthe lowest density.

The second approach to sparsification relies on the construction of a k-nearest
neighbor graph ofG′. Thek-nearest neighbor graph retains those edges which are
among the heaviestk edges of a node (= link to thek nearest neighbors). Several
variants of this algorithm exist. The mutualk-nearest neighbor graph is constructed
by discarding each edge for which the incident nodes are not among thek nearest
neighbors of each other. Another interesting variant is called shared nearest neighbor
graph, where the edges of an ordinaryk-nearest neighbor graph are weighted accord-
ing to the number of neighbors the incident nodes have in common. As illustrated
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in Figure 3 ak-nearest neighbor graph is able to retain regions of different density
in the object space. The main problem is the proper adjustment of the parameterk.
And, since the optimumk heavily depends on the (unknown) number and size of the
classes, even finding a limiting range of promising choices is difficult. Ertöz et al.
state [2]:

“The neighborhood list size,k, is the most important parameter as it de-
termines the granularity of the clusters. Ifk is too small, even a uniform
cluster will be broken up into pieces due to the local variations in the simi-
larity [. . . ]. On the other hand, ifk is too large, then the algorithm will tend
to find only a few large, well-separated clusters, and small local variations
in similarity will not have an impact.”

Hence, the construction of a suitable sparse similarity graph requires the generation
and evaluation of a huge number of candidates. Note that, more than the runtime, the
identification of a sensible internal evaluation measure isthe limiting factor in this
connection.

2.2 An Object-specific, Unsupervised Approach to Sparsification

Our goal is to provide a completely unsupervised approach tosparsification, while
striving for the performance of the existing supervised approaches.To achieve this
we claim that two objects in the thinned-out graphG are only allowed to share an
edge, if the probability that they belong to the same clusteris high. In particular we
propose that the following relation must hold:

P (c(o1) = c(o2)) > max{P (c(o1) = c(orand )), P (c(o2) = c(orand ))},

with orand ∈ O \ {o1, o2}. I.e., the probability that two objects,o1 ando2, belong
to the same cluster must exceed the probabilities that some randomly drawn object
from O belongs to the same cluster aso1 or o2. Given this postulation, the nearest
neighbor principle is used to establish a relation concerning the similarity scores of
the corresponding object representations:

s(x1,x2) > max{s(x1,x), s(x2,x)},

wherex is a virtual object representation reflecting the characteristics of the object
set. It comprises the average weights of all object representations inX :

x = (w1, . . . , wn)T with wj =

∑m

i=0
wi,j

m
.

If the similarity score of two object representations does not exceed the postu-
lated score, the respective edge is classified as an inter-class edge and is discarded.
Altogether, the decision ruleϕ for unsupervised sparsification reads as follows:

ϕ(o1, o2) :=

{
s(x1,x2), if s(x1,x2) > max{s(x1,x), s(x2,x)}

0 otherwise.
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The decision rule above yields convincing results in our sparsification experi-
ments. Nevertheless, cluster algorithms that are extremely sensitive to noise benefit
from a more exhaustive sparsification. To account for this, the notion ofsignificance
is introduced into the formula by modifying the virtual object representationx. In
the following formula the maximum weight of each featurew∗

i is considered as an
upper bound, and the harmonic mean between this bound and theaveraged feature
weight is computed:

x̂ = (ŵ1, . . . , ŵn)T with ŵi =
2 · w∗

i · wi

w∗

i + wi

.

The corresponding stricter decision rulêϕ, which accounts for significance, is
derived by substitutinĝx for x in the decision ruleϕ.

3 Evaluation

To evaluate the performance of our unsupervised approach tosparsification, 4 test
collections were constructed from the Reuters news corpus RCV1 [12]. The collec-
tions vary with respect to the number of documents, the number of categories, as
well as by the way the documents are distributed across the classes (cf. Table 1).

Table 1. Properties of the 4 test collections. Based on the first collection, one attribute at a
time is altered in the subsequent collections.

Collection Categories Documents Distribution

1 4 10.000 random
2 4 10.000 uniform
3 4 2.000 random
4 10 10.000 random

The documents are represented using the vector space model with normalized
tf -feature-weights [14], having applied Porter stemming andstopword elimination.
The similarity between two documents is computed as the dot product of their rep-
resentations. The nonzero similarity scores are manually divided into intra-class and
inter-class scores.

In the first experiment we are interested in the accuracy of our approach. It is
specified in terms of theF -measure,F = 2×precision×recall

precision+recall
. While precisionde-

notes the proportion of intra-class edges in the thinned-out graph,recall is deter-
mined by the proportion of intra-class edges retained. The global threshold spar-
sification that classifies the edges best (= highestF -measure) is identified by an
exhaustive search and is compared to the results obtained byour unsupervised ap-
proach. The average results of the experiment are shown in Column 4 of Table 2. Our
unsupervised sparsification approach with the virtual object x (Row 3) outperforms
sparsification with the optimum global threshold (Row 2).
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Table 2.Averaged results of the experimental analysis. The first andthe second row show the
results with the minimum and the optimum global threshold respectively. The third and the
fourth row report on our unsupervised approach, employing the virtual documentsx andbx.
Column 4 reports on theF -measure in the first experiment (sparsification task), the rightmost
column reports on the quality of the clusterings produced byMajorClust.

Approach % of retained % of discarded F -measure F -measure
intra-class edges inter-class edges (sparsification) (clustering)

τ = min 100.0% 6.0% 0.43 0.23
τ∗ = 0.075 59.9% 83.0% 0.59 0.61

ϕ 66.8% 85.9% 0.63 0.68
bϕ 37.4% 97.4% 0.50 0.76

In the second experiment the thinned-out similarity graphsare given to Major-
Clust, a representative of the density-based cluster formation paradigm (cf. Figure 1).
Here we use the classification-orientedF -measure, described, e.g., in [13], to deter-
mine the quality of the resulting clusterings. The average results are shown in the
rightmost column of Table 2. The first row serves as a baseline: these values are
achieved by applying the maximum global threshold that retains 100% of the intra-
class edges. Note that sparsification in general raises the cluster quality. Comparing
the different approaches to sparsification, our unsupervised approach with the virtual
objectx again outperforms the global threshold sparsification. Interestingly, sparsifi-
cation with the virtual object̂x, which retains only 37.4% of the intra-class edges but
discards 97.4% of the inter-class edges, attains the highest cluster qualities (Row 4).

4 Conclusion

The main contribution of this paper is a new, unsupervised approach to sparsification.
We argue that existing cluster analysis technology is over-strained with the amount of
noise that is typical for most categorization and classification tasks, e.g., in informa-
tion retrieval. A preprocessing of the similarity graph in the form of a sparsification
step considerably improves the cluster performance.

The outstanding property of the proposed rule is the consideration of the spe-
cific similarity distributions within the set of objects, while being parameterless at
the same time. Our analysis shows that even sparsification with the optimum global
threshold is outperformed. Recall in this context that a comparison to the optimum
threshold is only of theoretical interest: in practical applications, cluster analysis hap-
pens unsupervised, and the optimum threshold is not at hand.This fact underlines the
impact of the proposed strategy.

A still unanswered research question is the performance of our approach in com-
parison to ak-nearest neighbor approach. A preliminary evaluation of smaller docu-
ment sets (up to 2000 documents) revealed, that our unsupervised approach to spar-
sification is as effective as the best performing mutualk-nearest neighbor graph in
86% of 126 different cases [4].
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