
Lower Bounds for Three Algorithms for the

Transversal Hypergraph Generation

Matthias Hagen⋆

University of Kassel, Research Group Programming Languages / Methodologies,
Wilhelmshöher Allee 73, D–34121 Kassel, Germany

hagen@uni-kassel.de

Abstract. The computation of all minimal transversals of a given hy-
pergraph in output-polynomial time is a long standing open question
known as the transversal hypergraph generation. One of the first at-
tempts on this problem—the sequential method [Ber89]—is not output-
polynomial as was shown by Takata [Tak02]. Recently, three new algo-
rithms improving the sequential method were published and experimen-
tally shown to perform very well in practice [BMR03, DL05, KS05]. Nev-
ertheless, a theoretical worst-case analysis has been pending. We close
this gap by proving lower bounds for all three algorithms. Thereby, we
show that none of them is output-polynomial.

1 Introduction

The transversal hypergraph generation is the problem to compute, for a given
hypergraph H ⊆ 2V with vertex set V , the transversal hypergraph Tr(H) that
consists of all minimal subsets of V having a non-empty intersection with each
hyperedge of H. This problem has many applications in such different fields like
artificial intelligence and logic [EG95, EG02], computational biology [Dam06],
database theory [MR92], data mining and machine learning [GKMT97], mobile
communication systems [SS98], and distributed computing [GB85].

Due to the importance of the transversal hypergraph generation there have
been various approaches to solve it. But since the size of Tr(H) may be exponen-
tial in the size of H, we cannot find an algorithm that runs in time polynomial
in the size of the input H. Therefore, another notion of fast solvability has to
be used. An algorithm is said to be output-polynomial if its running time is
bounded polynomially in the size of the input and output [JPY88]. Finding an
output-polynomial algorithm for the transversal hypergraph generation is a long
standing open problem [Pap97].

One of the earliest approaches is the sequential method [Ber89]. It computes
the transversal hypergraph by iteratively combining transversals of specific sub-
hypergraphs of the input in a brute-force manner. The worst-case analysis of the

⋆ Partially supported by a Landesgraduiertenstipendium Thüringen and the Deutsche
Forschungsgemeinschaft (DFG) through project OPAL (optimal algorithms for hard
problems in computational biology), NI-369/2.

sequential method took many years until Takata showed that it is not output-
polynomial [Tak02]. So far, this is the only proven nontrivial lower bound for
any algorithm for the transversal hypergraph generation.

In recent years, several improvements of the sequential method have been
published. We focus on the DL-algorithm of Dong and Li [DL05], the BMR-
algorithm of Bailey, Manoukian, and Ramamohanarao [BMR03], and the KS-
algorithm of Kavvadias and Stavropoulos [KS05]. All three algorithms have been
empirically tested on practical instances. Especially the BMR-algorithm per-
forms very well on instances from the data mining field. But while the practi-
cal performance of the algorithms has been examined, a theoretical worst-case
analysis of their running times has been pending. We close this gap by giving
nontrivial lower bounds for all three algorithms. Furthermore, the bounds show
that none of the three algorithms is output-polynomial.

The paper is organized as follows. Section 2 contains some basic definitions,
a brief recapitulation of the sequential method and its analysis by Takata. In
Section 3 we show the DL- and the BMR-algorithm not to be output-polynomial.
Section 4 contains the analysis of the KS-algorithm. Some concluding remarks
follow in Section 5.

2 Basic Definitions and the Sequential Method

A hypergraph H = (V, E) consists of a set V of vertices and a finite family E of
subsets of V —the edges. If there is no danger of ambiguity, we also use the edge
set to refer to H. The size of H is the number of occurrences of vertices in the
edges. A transversal of H is a set t ⊆ V that has a non-empty intersection with
each edge of H. A transversal t is minimal if no proper subset of t is a transversal.
The set of all minimal transversals of H forms the transversal hypergraph Tr(H).
A hypergraph H is simple if it does not contain two hyperedges e, f with e ⊆ f .
By min(H) we denote the simple hypergraph consisting of the minimal hyper-
edges of H with respect to set inclusion. Since min(H) can be easily computed
in polynomial time and Tr(H) = Tr(min(H)) holds for every hypergraph H, we
concentrate on the transversal hypergraph generation for simple hypergraphs.
But even for simple hypergraphs the size of the transversal hypergraph may be
exponential. Hence, there cannot be an algorithm computing the transversal hy-
pergraph in polynomial time. A suitable notion of fast solvability for such kind
of problems is that of output-polynomial time [JPY88]. An algorithm is said to
be output-polynomial if its running time is bounded polynomially in the sum of
the sizes of the input and output.

Given simple hypergraphs H = {e1, e2, . . . , em} and H′ = {e′1, e
′
2, . . . , e

′
m′}

there are two different “unions”, namely

H ∪H′ = {e1, e2, . . . , em, e′1, e
′
2, . . . , e

′
m′} and

H ∨H′ = {ei ∪ e′j : i = 1, 2, . . . , m, j = 1, 2, . . . , m′}.

Proposition 2.1 ([Ber89]). Let H and H′ be two simple hypergraphs. Then

Tr(H ∪H′) = min(Tr(H) ∨ Tr(H′)).

2

Algorithm 1 The Sequential Method

1: Tr(H1)← {{v} : v ∈ e1}
2: for i← 2, . . . , m do

3: Tr(Hi)← min(Tr(Hi−1) ∨ {{v} : v ∈ ei})
4: end for

5: output Tr(Hm)

The sequential method [Ber89] uses Proposition 2.1 to generate the transver-
sal hypergraph as follows. For a hypergraph H = {e1, e2, . . . , em} let Hi =
{e1, e2, . . . , ei}, i = 1, 2, . . . , m. We then have

Tr(Hi) = min(Tr(Hi−1) ∨ Tr({ei})) = min(Tr(Hi−1) ∨ {{v} : v ∈ ei})

and Tr(H) = Tr(Hm). This implies a straightforward iterative computation
process—the sequential method. A pseudocode listing is given in Algorithm 1.
Despite the simplicity of the sequential method it took a couple of years until
Takata [Tak02] presented a nontrivial lower bound using the following induc-
tively defined family of hypergraphs.

G0 = {{v1}} and

Gi = (A ∪ B) ∨ (C ∪ D), where A,B, C,D are vertex-disjoint copies of Gi−1.

Takata showed the sequential method not to be output-polynomial based on the
following observations.

Lemma 2.2 ([Tak02]). We have |VGi
| = 4i, |Gi| = 22(2i

−1), |Tr(Gi)| =

22i
−1. For i ≥ 2 and any e ∈ Gi, it holds that |Tr(Gi \{e})\Tr(Gi)| ≥ 2(i−2)2i+2.

From Lemma 2.2 it follows that, independent of the edge ordering, the penulti-
mate (intermediate) result computed by the sequential method on input Gi is su-
perpolynomial in the size of the input and output (cf. the original paper [Tak02]
for more details).

3 The Algorithms of Dong and Li, and Bailey, Manoukian

and Ramamohanarao

The border-differential algorithm of Dong and Li [DL05] comes from the data
mining field and is intended for mining emerging patterns. The analogy to
the generation of hypergraph transversals was already pointed out by Bailey,
Manoukian, and Ramamohanarao [BMR03]. A pseudocode listing of the DL-
algorithm is given in Algorithm 2.

The algorithm was experimentally evaluated on many practical data mining
cases [DL05] whereas a theoretical analysis of the running time was left open.
For this purpose the conversion of the algorithm to the hypergraph setting is
very fruitful. The only observable difference between the sequential method and

3

Algorithm 2 The DL-Algorithm

1: Tr(H1)← {{v} : v ∈ e1}
2: for i← 2, . . . , m do

3: Trguaranteed ← {t ∈ Tr(Hi−1) : t ∩ ei 6= ∅}
4: ecovered

i ← {v ∈ ei : {v} ∈ Trguaranteed}
5: Tr(Hi−1)

′ ← Tr(Hi−1) \ Trguaranteed

6: e′i ← ei \ ecovered
i

7: for all t′ ∈ Tr(Hi−1)
′ in increasing cardinality order do

8: for all v ∈ e′i do

9: if t′ ∪ {v} is not superset of any t ∈ Trguaranteed then

10: Trguaranteed ← Trguaranteed ∪ {t
′ ∪ {v}}

11: end if

12: end for

13: end for

14: Tr(Hi)← Trguaranteed

15: end for

16: output Tr(Hm)

the DL-algorithm is that the DL-algorithm takes special care on how to perform
the minimization of Tr(Hi−1)∨{{v} : v ∈ ei}. But as Takata’s analysis showed,
the minimization is not the bottleneck of the sequential method. Thus, we can
extend Takata’s analysis of the sequential method in a straightforward way to
the DL-algorithm and get the same lower bound.

Theorem 3.1. The DL-algorithm is not output-polynomial. Its running time is

at least nΩ(log log n), where n denotes the size of the input and output.

Nevertheless, for hypergraphs with only a few edges of small size the DL-algo-
rithm has been shown experimentally to perform well [DL05]. This property is
exploited by the BMR-algorithm [BMR03] (cf. Algorithm 3 for the listing) as it
uses the DL-algorithm as a subroutine that computes all minimal transversals
for small hypergraphs (line 16 of the listing). The BMR-algorithm on input H
is invoked by the top-level call with the set E of edges of H and an empty set
Vpart. The global variable Tr is initially empty.

A bottleneck for the running time of the BMR-algorithm is that possibly
many of the recursively computed transversals—the set Tr′ in the listing—
actually are not minimal for the input hypergraph H. We concentrate on this is-
sue and construct a family G′

i of hypergraphs for which the BMR-algorithm com-
putes too many such non-minimal transversals to run in output-polynomial time.
Let G′(i) = {ei, fi}, where ei = {vi2−i+1, . . . , vi2} and fi = {vi2+1, . . . , vi2+i}.
We inductively define

G′
1 = {{v1}, {v2}}, and

G′
i = (G′

i−1 ∪ {{wi}}) ∨ G′(i), for i ≥ 2.

Note that G′
i−1, {{wi}} and G′(i) are pairwise vertex-disjoint simple hypergraphs

for i ≥ 2. To calculate the size of G′
i and of Tr(G′

i) we have to solve the recurrences

4

Algorithm 3 The BMR-Algorithm

Input: a simple hypergraph, given by the set E of its hyperedges, and a set Vpart

of partitioning vertices
1: V ← set of all vertices in E

2: order vertices in increasing frequency ⇒ [v1, . . . , vk]
3: for i← 1, . . . , k do

4: Epart ← ∅
5: V ← V \ {vi}
6: for all e ∈ E do

7: if vi 6∈ e then

8: Epart ← min(Epart ∪ (e \ V))
9: end if

10: end for

11: Vpart ← Vpart ∪ {vi}
12: a← average edge cardinality of Epart multiplied by |Epart|
13: if |Epart| ≥ 2 and a ≥ 50 then

14: recursively call the BMR-algorithm on input Epart, Vpart

15: else

16: compute Tr(Epart) via the DL-algorithm
17: Tr′ ← Tr(Epart) ∨ {Vpart}
18: Tr ← min(Tr ∪ Tr′)
19: end if

20: Vpart ← Vpart \ {vi}
21: end for

22: return Tr

|G′
i| = 2 · |G′

i−1| + 2 and |Tr(G′
i)| = |Tr(G′

i−1)| + i2. With the initial conditions
|G′

1| = 2 and |Tr(G′
1)| = 1 we obtain

|G′
i| = 2i+1 − 2 and |Tr(G′

i)| =
2i3 + 3i2 + i

6

by iteration. As for the number |VG′

i
| of vertices of G′

i, we have |VG′

i
| = i2 +2i−1.

The BMR-algorithm iteratively partitions the input hypergraph to obtain
smaller hypergraphs where the transversal generation is feasible. The partition-
ing depends on the vertex frequencies. Hence, we first have to analyze the fre-
quencies of the vertices in G′

i.

Lemma 3.2. For i ≥ 2 let #v(i, j) and #w(i, j) respectively denote the number

of occurrences of vertex vj and wj in G′
i. Then

#w(i, j) = 0 for j ≥ i,

#w(i, j) > #w(i, j + 1) for 2 ≤ j < i,

#w(i, 2) = #v(i, 1) = #v(i, 2),

#v(i, j) = 0 for j ≥ i2 + i,

#v(i, j) = #v(i, k) for l2 − l + 1 ≤ j ≤ k ≤ l2 + l, with 1 ≤ l ≤ i,

#v(i, j) < #v(i, k) for 1 ≤ j < l2 − l + 1 ≤ k ≤ l2 + l, with 2 ≤ l ≤ i.

5

All of the above (in)equalities follow directly from the definition of G′
i or can be

easily proven by induction. From Lemma 3.2 it follows that the vertices from
G′(i) are the last vertices in the vertex ordering computed by the BMR-algorithm
on input G′

i. This is crucial for the next step of our analysis in which we examine
the recursive calls produced by the BMR-algorithm on input G′

i.

Lemma 3.3. For i ≥ 4, the BMR-algorithm on input G′
i recursively calls the

BMR-algorithm at least 2i times with a modified G′
i−1 ∪ {{wi}} as input. Here,

modified means that all edges of G′
i−1 ∪{{wi}} may additionally include at most

half of the vertices of G′(i).

Proof. We only examine the last 2i vertices processed by the BMR-algorithm.
From Lemma 3.2 we know that these are exactly the vertices from G′(i)—
contained in the edges ei and fi. Let v′1, v

′
2, . . . , v

′
2i be any ordering of these

vertices. We consider the BMR-algorithm on that ordering.
Let the j-th vertex v′j , 1 ≤ j ≤ 2i, from the above ordering be the current

partitioning vertex (line 3 of the BMR-algorithm). After partitioning (lines 5
to 10), the remaining hypergraph has the form

(G′
i−1 ∪ {{wi}}) ∨ ({v′1, . . . , v

′
j−1} ∩ xi),

where xi = fi if v′j ∈ ei, and xi = ei if v′j ∈ fi. Hence, the remaining hypergraph
always is a G′

i−1 ∪ {{wi}} with at most half of the vertices from G′(i) in every
edge.

Altogether, for each of the last 2i vertices the minimal transversals of a
modified G′

i−1 ∪ {{wi}} have to be computed. Note that a modified G′
3 has 15

edges of average size at least 5.4 and thus a ≥ 81 (line 12). Hence, for i ≥ 4
the last 2i vertices invoke recursive calls of the BMR-algorithm with a modified
G′

i−1 ∪ {{wi}} as input. ⊓⊔

With Lemma 3.3 at hand we can analyze the number of non-minimal transversals
computed by the BMR-algorithm.

Lemma 3.4. Let i ≥ 4. For the number η(i) of non-minimal transversals com-

puted by the BMR-algorithm on input G′
i we have η(i) ≥ 2i−1 · i!.

Proof. From Lemma 3.3 it follows that there are 2i recursive calls with a mod-
ified G′

i−1 ∪ {{wi}} as input. Such a recursive call produces at least all of the
minimal and non-minimal transversals of G′

i−1 ∪ {{wi}} augmented by the cur-
rent partitioning vertex as transversals for G′

i. But since at least the partitioning
vertex is dispensable in these transversals, none of them is minimal for G′

i. There
are at least η(i−1)+ |Tr(G′

i−1)| such non-minimal transversals per recursive call.
Hence, we have to solve the recurrence

η(i) ≥ 2i · (η(i − 1) + |Tr(G′
i−1)|)

≥ 2i · η(i − 1).

A straightforward computation yields η(3) = 34. Hence, η(3) ≥ 22 · 3! and we
get η(i) ≥ 2i−1 · i! by iteration. ⊓⊔

6

Putting all pieces together we are able to give a superpolynomial lower bound
on the running time of the BMR-algorithm.

Theorem 3.5. The BMR-algorithm is not output-polynomial. Its running time

is at least nΩ(log log n), where n denotes the size of the input and output.

Proof. We consider the BMR-algorithm on input G′
i. By mi = |VG′

i
| · (|G′

i| +
|Tr(G′

i)|) we denote an upper bound on the size of the input and output. For
i ≥ 22 we have

mi = (i2 + 2i − 1) ·

(

2i+1 − 2 +
2i3 + 3i2 + i

6

)

≤ 23i.

The running time of the BMR-algorithm on input G′
i is at least η(i), the number

of non-minimal transversals generated. Thus, to analyze the running time we
will show that η(i) is superpolynomial in mi. It suffices to show that

2i−1 · i! > (23i)c, for any constant c.

This is equivalent to i − 1 + log(i!) > c · 3i, for any constant c. Using Stirling’s
formula we have log(i!) ≥ i·log i−i and thus it suffices to show i−1+i·log i−i >

c · 3i, for any constant c. This is equivalent to

log i

3
−

1

3i
> c, for any constant c.

Since the last equation obviously holds for sufficiently large i, we have proven

that η(i) is superpolynomial in mi, namely η(i) = m
Ω(log log mi)
i . ⊓⊔

4 The Algorithm of Kavvadias and Stavropoulos

A first drawback of the sequential method or the BMR-algorithm that Kavva-
dias and Stavropoulos [KS05] observe is the memory requirement. Since newly
computed transversals have to be checked for minimality against the previously
computed minimal transversals, all the previously generated minimal transver-
sals have to be stored. The KS-algorithm tries to overcome this potentially expo-
nential memory requirement by two techniques. The first is to combine vertices
that belong exactly to the same hyperedges.

Definition 4.1 (generalized vertex, [KS05]). Let H be a hypergraph with

vertex set V . The set X ⊆ V is a generalized vertex of H if all vertices in X

belong to exactly the same hyperedges of H.

While adding edge ei, and hence generating the minimal generalized transversals
of Hi out of the minimal generalized transversals of Hi−1, the generalized vertices
have to be updated according to ei. Kavvadias and Stavropoulos characterize
the following three types of generalized vertices X of a minimal generalized
transversal t of Hi−1.

7

– type α: X ∩ ei = ∅. Hence, X is a generalized vertex of Hi.
– type β: X ⊂ ei. Hence, X is a generalized vertex of Hi.
– type γ: X ∩ ei 6= ∅ and X 6⊂ ei. Here, X is divided into X1 = X \ (X ∩ ei)

and X2 = X ∩ ei. Both X1 and X2 are generalized vertices of Hi.

Let κα(t, i), κβ(t, i), and κγ(t, i) denote the number of generalized vertices of type
α, β, and γ in t according to ei. When edge ei is added, the minimal generalized
transversal t of Hi−1 has to be split into 2κγ(t,i) generalized transversals of
Hi−1—the so-called offsprings of t—since all combinations of newly generalized
vertices have to be generated. If κβ(t, i) 6= 0, all these newly generated offsprings
are also minimal transversals of Hi. But if κβ(t, i) = 0, there is a special offspring
t0 of t that contains all the X1-parts of the γ-type generalized nodes of t. Hence,
t0 ∩ ei = ∅ and t0 has to be augmented by a vertex from ei to be a transversal
of Hi. All the other offsprings of t already are minimal transversals of Hi since
they contain at least one X2-part of a generalized vertex from t.

The second technique to overcome the potentially exponential memory re-
quirement is based on the observation that the sequential method is a form of
breadth-first search through a “tree” of minimal transversals. At the ith-level of
the “tree” the nodes are the minimal transversals of the partial hypergraph Hi.
The descendants of a minimal transversal t at level i are the minimal transversals
of Hi+1 that include t. Note that, since a node at level i + 1 may have several
ancestors at level i, the structure is not really a tree but very tree-like. The bot-
tom level consists of the minimal transversals of H. When cycling through this
“tree” breadth-first, one has to wait very long for the first minimal transversal
to be output and some nodes are visited several times because they have more
than one ancestor. To overcome the long time that may pass till the first minimal
transversal is output, the KS-algorithm uses a depth-first strategy. And to really
cycle through a tree and not a tree-like structure with some cycles, Kavvadias
and Stavropoulos introduce the notion of so-called appropriate vertices.

Definition 4.2 (appropriate vertex, [KS05]). Let H = {e1, . . . , em} be a

hypergraph with vertex set V and let t be a minimal transversal of the partial

hypergraph Hi of H. A generalized vertex v ∈ V \ t is an appropriate vertex for t

if no other vertex in t ∪ {v} except v can be removed and the remaining set still

be a transversal of Hi. The set appr(t, e) contains all appropriate vertices for t

in edge e.

Note that the special offspring t0 of a minimal generalized transversal t of Hi−1

has to be augmented by a vertex from appr(t, ei) only. All the other vertices
from ei can be skipped. Expanding only with appropriate vertices ensures that
no non-minimal transversals are generated and avoids regenerations. Another
advantage is that the previously described transversal “tree” structure becomes
a real tree (cf. the original paper [KS05] for more details).

All the described techniques—generalized vertices, depth-first strategy, ap-
propriate vertices—together with the main idea of the sequential method—
processing the edges one after the other—are used in the KS-algorithm (cf.
Algorithm 4 for the listing).

8

Algorithm 4 The KS-Algorithm

1: express e1 as a set of one generalized vertex
2: compute the transversal t = Tr(e1)
3: AddNextHyperedge(t,e2)

4: procedure AddNextHyperedge(t,ei)
5: update the set of generalized vertices
6: express t and ei as sets of generalized vertices of level i

7: l← 1
8: while GenerateNextTransversal(t, l) do

9: if ei is the last hyperedge then

10: output t′ without using generalized vertices
11: else

12: AddNextHyperedge(t′, ei+1)
13: l ← l + 1
14: end if

15: end while

16: end procedure

17: function GenerateNextTransversal(t, l)
18: if κβ(t, i) 6= 0 then

19: if l ≤ 2κγ (t,i) then

20: t′ ← the l-th offspring of t

21: return true

22: else

23: return false

24: end if

25: else if κβ(t, i) = 0 then

26: if l ≤ 2κγ (t,i) − 1 then

27: t′ ← the l-th offspring of t except t0

28: return true

29: else if 2κγ(t,i) ≤ l ≤ 2κγ (t,i) − 1 + |appr(t, ei)| then

30: t′ = t0 augmented by the (l − 2κγ (t,i) + 1)-th vertex of appr(t, ei)
31: return true

32: end if

33: else

34: return false

35: end if

36: end function

9

As for the running time, the KS-algorithm is experimentally shown [KS05]
to be competitive to the sequential method, the BMR-algorithm, and an imple-
mentation of Algorithm A of Fredman and Khachiyan [BEGK03, FK96]. We will
show that the KS-algorithm is not output-polynomial.

First, we note that there are situations in which the KS-algorithm can-
not find an appropriate vertex. Consider for example the hypergraph H =
{{v1, v5}, {v2, v5}, {v3, v6}, {v4, v6}, {v5, v6}}. Having processed all but the last
edge, there are no generalized vertices left. We concentrate on the path down
the transversal tree that corresponds to choosing v1, v2, v3, and v4. The inter-
mediate transversal is t = {v1, v2, v3, v4}. The only edge left is {v5, v6}. But
the KS-algorithm cannot find an appropriate vertex in this edge for t. Hence,
there are dead ends in the tree, namely leaves that do not contain a minimal
transversal of the input H. The next step is to find hypergraphs with too many
such dead ends.

Lemma 4.3. For i ≥ 3, the number of dead ends the KS-algorithm has to visit

for any of Takata’s hypergraphs Gi as input is at least 2(i−2)2i+1, independent of

the edge ordering.

Proof. Consider the hypergraph family Gi of Takata defined in Section 2. From
Lemma 2.2 it follows that, whatever ordering of the edges is chosen, there are
at least 2(i−2)2i+2 nodes in the penultimate level of the transversal tree de-
scribed above Definition 4.2. The bottom level of the tree obviously contains
|Tr(Gi)| many nodes—one for each minimal transversal. Since |Tr(Gi)| = 22i

−1

(cf. Lemma 2.2), there is a decrease in the number of nodes from the penul-
timate level to the bottom level for i ≥ 3. This decrease can only be caused
by dead ends in the penultimate level. Hence, for i ≥ 3 there are at least
2(i−2)2i+2 − 22i

−1 ≥ 2(i−2)2i+1 many dead ends in the penultimate level. ⊓⊔

Using Lemma 4.3 we can show that the KS-algorithm is not output-polynomial.

Theorem 4.4. The KS-algorithm is not output-polynomial. Its running time is

at least nΩ(log log n), where n denotes the size of the input and output.

Proof. We consider the KS-algorithm on input Gi. By mi = |VGi
|·(|Gi|+|Tr(Gi)|)

we denote an upper bound on the size of Gi and Tr(Gi). From Lemma 2.2 we

have mi = 4i · (22(2i
−1) + 22i

−1), which results in mi ≤ 22i+2

.
Let η̂(i) denote the number of dead end situations visited by the KS-algorithm

on input Gi. The time, the KS-algorithm needs to compute Tr(Gi), is at least
the number of dead end situations visited. Since the KS-algorithm visits the
transversal tree depth-first, it visits all the dead end situations in the penulti-
mate level of the tree. With Lemma 4.3 we have η̂(i) ≥ 2(i−2)2i+1 for i ≥ 3. Thus,
to analyze the running time we will show that η̂(i) is superpolynomial in mi. It

suffices to show that 2(i−2)2i

> (22i+2

)c, for any constant c. This is equivalent to
i − 2 > 4c, for any constant c. Since this obviously holds for large enough i, we

have proven that η̂(i) is superpolynomial in mi, namely η̂(i) = m
Ω(log log mi)
i . ⊓⊔

10

5 Concluding Remarks

We have proven superpolynomial lower bounds for the DL-, the BMR-, and
the KS-algorithm in terms of the size of the input and output. Thus, like the
underlying sequential method, these three algorithms are not output-polynomial.

We are not aware of any other nontrivial lower bounds for algorithms gener-
ating the transversal hypergraph although we suppose that none of the known
algorithms is output-polynomial. Extending the existing lower bounds to other
algorithms seems to be not that straightforward.

Consider for instance the multiplication method suggested by Takata [Tak02].
Very recently Elbassioni proved a quasi-polynomial upper bound on the running
time [Elb06]. But giving a superpolynomial lower bound for the multiplication
method requires the construction of new hypergraphs. Takata’s hypergraphs Gi

and our hypergraphs G′
i are solved too fast by the multiplication method.

There are also no nontrivial lower bounds known for Algorithms A and B
of Fredman and Khachiyan [FK96]. Though Gurvich and Khachiyan [GK97]
note that it should be possible to give a superpolynomial lower bound for Algo-
rithm A using hypergraphs very similar to the Gi, the proof is still open. Giving
a lower bound for Algorithm B—considered to be the fastest known transversal
hypergraph algorithm—seems to be even more involved.

Acknowledgments I thank Martin Mundhenk and the anonymous referees for
their valuable comments and suggestions.

References

[BEGK03] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid
Khachiyan. Extending the Balas-Yu bounds on the number of maximal
independent sets in graphs to hypergraphs and lattices. Mathematical
Programming, 98(1-3):355–368, 2003.

[Ber89] Claude Berge. Hypergraphs, volume 45 of North-Holland Mathematical
Library. North-Holland, 1989.

[BMR03] James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. A fast
algorithm for computing hypergraph transversals and its application in
mining emerging patterns. In Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM 2003), 19-22 December 2003, Mel-
bourne, Florida, USA, pages 485–488. IEEE Computer Society, 2003.

[Dam06] Peter Damaschke. Parameterized enumeration, transversals, and imper-
fect phylogeny reconstruction. Theoretical Computer Science, 351(3):337–
350, 2006.

[DL05] Guozhu Dong and Jinyan Li. Mining border descriptions of emerging pat-
terns from dataset pairs. Knowledge and Information Systems, 8(2):178–
202, 2005.

[EG95] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals
of a hypergraph and related problems. SIAM Journal on Computing,
24(6):1278–1304, 1995.

11

[EG02] Thomas Eiter and Georg Gottlob. Hypergraph transversal computation
and related problems in logic and AI. In Sergio Flesca, Sergio Greco,
Nicola Leone, and Giovambattista Ianni, editors, Logics in Artificial In-
telligence, European Conference, JELIA 2002, Cosenza, Italy, September,
23-26, Proceedings, volume 2424 of Lecture Notes in Computer Science,
pages 549–564. Springer, 2002.

[Elb06] Khaled M. Elbassioni. On the complexity of the multiplication method
for monotone CNF/DNF dualization. In Yossi Azar and Thomas Er-
lebach, editors, Algorithms - ESA 2006, 14th Annual European Sympo-
sium, Zurich, Switzerland, September 11-13, 2006, Proceedings, volume
4168 of Lecture Notes in Computer Science, pages 340–351. Springer, 2006.

[FK96] Michael L. Fredman and Leonid Khachiyan. On the complexity of du-
alization of monotone disjunctive normal forms. Journal of Algorithms,
21(3):618–628, 1996.

[GB85] Hector Garcia-Molina and Daniel Barbará. How to assign votes in a
distributed system. Journal of the ACM, 32(4):841–860, 1985.

[GK97] Vladimir Gurvich and Leonid Khachiyan. On the frequency of the most
frequently occurring variable in dual monotone DNFs. Discrete Mathe-
matics, 169(1-3):245–248, 1997.

[GKMT97] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, and Hannu Toivo-
nen. Data mining, hypergraph transversals, and machine learning. In Pro-
ceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 12-14, 1997, Tucson, Arizona,
pages 209–216. ACM Press, 1997.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis.
On generating all maximal independent sets. Information Processing Let-
ters, 27(3):119–123, 1988.

[KS05] Dimitris J. Kavvadias and Elias C. Stavropoulos. An efficient algorithm
for the transversal hypergraph generation. Journal of Graph Algorithms
and Applications, 9(2):239–264, 2005.

[MR92] Heikki Mannila and Kari-Jouko Räihä. On the complexity of inferring
functional dependencies. Discrete Applied Mathematics, 40(2):237–243,
1992.

[Pap97] Christos H. Papadimitriou. NP-completeness: A retrospective. In Pier-
paolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, ed-
itors, Automata, Languages and Programming, 24th International Collo-
quium, ICALP’97, Bologna, Italy, 7-11 July 1997, Proceedings, volume
1256 of Lecture Notes in Computer Science, pages 2–6. Springer, 1997.

[SS98] Saswati Sarkar and Kumar N. Sivarajan. Hypergraph models for cellular
mobile communication systems. IEEE Transactions on Vehicular Tech-
nology, 47(2):460–471, 1998.

[Tak02] Ken Takata. On the sequential method for listing minimal hitting sets.
In Proceedings Workshop on Discrete Mathematics and Data Mining, 2nd
SIAM International Conference on Data Mining, April 11-13, Arlington,
Virginia, USA, 2002, pages 109–120, 2002.

12

