On the Fixed-Parameter Tractability of the
Equivalence Test of Monotone Normal Forms

Matthias Hagen !

Friedrich-Schiller- Universitat Jena, Institut fiir Informatik, D-07737 Jena

Abstract

We consider the problem MONET—given two monotone formulas ¢ in DNF and
in CNF, decide whether they are equivalent. While MONET is probably not coNP-
hard, it is a long standing open question whether it has a polynomial time algorithm
and thus belongs to P. In this paper we examine the parameterized complexity of
MONET. We show that MONET is in FPT by giving fixed-parameter algorithms for
different parameters.

Key words: Analysis of algorithms, Computational complexity, Equivalence test,
Fixed-parameter tractability, Monotone normal forms

1 Introduction

The problem MONET—MoO(notone) N(ormal form) E(quivalence) T(est)—asks
for the equivalence of two monotone formulas ¢ in DNF and ¢ in CNF. Algo-
rithms solving the computational variant MONET’—given a monotone DNF,
compute the equivalent CNF—can be easily transformed to solve MONET and
vice versa. MONET and MONET’ are equivalent in the sense of solvability in ap-
propriate terms of polynomial time [1]. Furthermore, MONET' is polynomially
equivalent to the fundamental problems of dualizing monotone CNF's and the
transversal hypergraph generation. Hence, MONET and MONET’ have many
applications in such different fields like artificial intelligence and logic [6,7],
computational biology [3], database theory [18], data mining and machine
learning [12], mobile communication systems [22], distributed systems [10],
and graph theory [13,16]. The currently best known algorithms for MONET

Email address: hagen@cs.uni-jena.de (Matthias Hagen).
1 Supported in part by a Landesgraduiertenstipendium Thiiringen.

Preprint submitted to Elsevier 16 March 2007

run in quasi-polynomial time or use O(log” n) nondeterministic bits [8,9,14].
Thus, on the one hand, MONET is probably not coNP-complete, but on the
other hand a polynomial time algorithm is not yet known. Actually there
are polynomial time algorithms for many special classes—e.g. when ¢ is a k-
DNF, 2-monotonic, p-equivalent, or acyclic [2,5,6]—but the complexity of the
general problem MONET is a long standing open question [20].

In this paper we analyze the parameterized complexity of MONET. We show
that MONET is in FPT for the parameters number v of variables in ¢ and
1, number m of monomials in ¢, and a parameter ¢ describing the variable
frequencies in .

2 Preliminaries

Two Boolean formulas are equivalent if they have the same truth table. Mono-
tone formulas are Boolean formulas with A and V as only connectives. No
negation signs are allowed. A monomial (resp. clause) is the conjunction (dis-
junction) of variables. We often refer to monomials or clauses simply as terms.
A monotone DNF' (resp. CNF) is the disjunction (conjunction) of monomials
(clauses). A monotone normal form p is said to be irredundant if there are no
two terms in p such that one is contained in the other. Since the irredundant
DNF and CNF of monotone formulas are unique [21] and can be obtained from
respective redundant normal forms in quadratic time, we only concentrate on
irredundant inputs yielding the following formal definition.

MONET: nstance: irredundant, monotone formulas ¢ in DNF and
1 in CNF with variable set V'

question: are @ and v equivalent?

Note that irredundant formulas with different sets of variables cannot be equiv-
alent. As this can be tested in quadratic time, we assume that ¢ and 1 contain
the same variables. The size of the MONET-instance (¢,) is the number of
variable occurrences in ¢ and ¥. An assignment for ¢ and 1) is a subset A C V.
Thereby, the notion is that variable z is set to true iff + € A. This means that
the powerset P(V') can also be seen as the set of all assignments for ¢ and .
In the same way we consider the monomials of ¢ and the clauses of ¥ to be
sets of variables. Hence, they can also be viewed as assignments.

In this paper we analyze versions of MONET that have some parameters as
input in addition to the DNF ¢ and the CNF . Briefly, a parameterized
problem with parameter k is fized-parameter tractable if it can be solved by an
algorithm running in time O(f (k) - poly(n)), where f is a function depending

on k only, n is the size of the input, and poly(n) is any polynomial in 7.
The class FPT contains all fixed-parameter tractable problems. For a more
general survey on fixed-parameter tractability we refer to the monograph of
Niedermeier [19].

3 Results

3.1 Number v of Variables as Parameter

A first super-naive fixed-parameter tractability result for the number v of
variables is at hand by simply checking all of the possible 2V assignments for
an instance (i, 1) of size n. This yields an O(2"-n)-time algorithm for MONET.
To considerably improve this time bound, we use the notion of the maximum
latency introduced by Makino and Ibaraki [17].

For a monotone formula ¢ we denote by T'(9) (resp. F'(g)) the set of assign-
ments that satisfy o (do not satisfy g). We say that a MONET-instance (¢, 1)
is well-formed if ¢ and 1 are not empty but T'(p) N F() is. Testing whether
a given MONET-instance is well-formed can be accomplished in polynomial
time. The first condition is obviously trivial and the second is equivalent to
testing the validity of ¢ — 9, which is an easy quadratic time procedure [4].

Definition 3.1 (Maximum Latency) Let (¢,v) be a well-formed MONET-
instance. By U we denote the set of assignments that are neither in T'(¢) nor

in F(¥), i.e., U= F(p)NT(). The latency of (¢,1) is defined as
A,) =min{| Ay A t| : Ay € U, t is a term of ¢ or ¢},

where A denotes the symmetric difference. For well-formed MONET-instances
with v variables the maximum latency is defined as

A(v) = max{ A(p,¥) : ¢ and ¥ have v variables}.

Makino and Ibaraki proved the following tight bound on the maximum latency.
Proposition 3.2 ([17]) A(v) = [v/4] + 1.

Finding an assignment Ay € U that does not satisfy ¢ but satisfies v is
equivalent to prove (p,1) ¢ MONET. Hence, with Proposition 3.2 a well-
formed MONET-instance (p,1) can be tested for equivalence by checking all
the assignments that differ in at most [v/4] 4+ 1 variables from any term of ¢
and 1. We will use this idea in an algorithm that has a better running time

than the first super-naive approach. For the analysis we will need the following
combinatorial observation.

Lemma 3.3 Let 0 <e < % Then we have

S (o[0T %)

PROOF. It is well-known (see, e.g., [11]) that asymptotically ZEBJ (k) =

okh(€)=510gk+O0() " where h(e) = —eloge — (1 — ¢)log(l — ¢) is the entropy
function. Expanding the asymptotic equation yields the lemma. O

Theorem 3.4 Let (p,1) be a MONET-instance of size n having v variables.
Then (¢,v) € MONET can be decided in time

1 ity 1 31" 1
o) =))
()65 %

PROOF. If the instance is not well-formed, it is rejected in quadratic time.
Otherwise, for v < 4, we check all the at most 16 assignments in a brute-force
manner in constant time.

For v > 5, we check all assignments that differ from any term of ¢ or ¢ in at
most A(v) variables. This means that we check the (|v/4] 4+ 1)-neighborhoods
of the terms of ¢ and 1, which suffices as follows from Proposition 3.2. For
each such assignment A we test in O(n) time whether ¢ and 1 get the same
value. There are at most n terms in ¢ and . Hence, the running time of an
algorithm checking all the necessary assignments can be bounded by O(s-n?),
where s denotes the number of assignments in a A(v)-neighborhood. We have
s = ZE}J (1’), where € = i+%. For v > 5 we have ¢ < % Hence, the estimation
of Lemma 3.3 can be applied and the theorem follows. O

Table 1 contains the running time stated in Theorem 3.4 for special v in a more
readable format. Note that an estimation for v — oo yields a lower bound of

1
Q(1.7547° - — - n?).
(=)

v running time
> 5 0(1.991”-%-712)
> 10 0(1.911%)-%-712)
> 20|O(L.843" - o= -n?)
> 50 0(1.7921)-%-712)
> 100 0(1.7741)-%-712)
> 1000|O(1.757" - %-rﬂ)

Table 1
Running time from Theorem 3.4 for special values of v

3.2 Number m of Monomials as Parameter

We show that MONET is fixed-parameter tractable with the number m of
monomials in ¢ as parameter.

Theorem 3.5 Let (p,1)) be a MONET-instance of size n with m monomials
in . Then (¢,1) € MONET can be decided in time O(2m(m=1eem+4),3 1 p2),

PROOF. Note that m monomials can split the set of variables into at most
2™ classes of variables that appear in exactly the same monomials (actually
there are at most 2™ — 1 classes but this would only complicate the below
estimations). Choosing representatives for each class and replacing variables
by them yields a modified DNF ¢’ with m monomials and at most 2 variables.
Hence, the irredundant, equivalent CNF ¢’ of ¢/ cannot have clauses that
contain more than m variables. We compute ¢’ by adapting the KS-algorithm
of Kavvadias and Stavropoulos [15] for hypergraph transversal generation. The
main idea of the KS-algorithm is to process a depth-first search in a search
tree that is built as follows. The root of the tree corresponds to a monomial
of ¢'. If the subset of variables on the path from the root to the current
node (this subset forms a clause candidate) does not intersect all monomials
of ¢, the KS-algorithm expands it by picking a monomial that is not yet
intersected and generating edges for each so-called appropriate variable in
this monomial. Briefly, a variable is appropriate if adding it to the current
candidate set does not result in a set where another variable could be left
out and still all monomials except the last one are intersected. Checking a
monomial for appropriate vertices can be done in time O((2™ - m)?) since a
monomial contains at most 2™ variables, the current clause candidate set has
size at most m, and the size of ¢ is bounded by 2™ - m. Expanding only by
appropriate variables ensures that generated clauses are minimal and that no
repetitions occur [15].

If all monomials are covered, the KS-algorithm puts out the clause and starts
backtracking. In the worst case the search tree that is traversed by the KS-
algorithm contains a node corresponding to each variable subset of size at most
m (written on the paths from the root to the nodes). There are 31" (27) <

m- (27:) such subsets. Using Stirling’s formula and the fact that e < 4 we get

(27:) < 2m(m-logm+2) "GQince in the worst case for each node the appropriate

variables have to be determined, the KS-algorithm needs O(2m(m=legm+4);,3)
time to compute the CNF '

From ¢’ we compute a CNF 9" without representatives. This is done by
systematically processing the representatives one after the other. Let y be the
currently processed representative that stands for the variables z;,,..., z;,.
For each occurrence of y the respective clause is copied k times and in the
J-th copy we replace y by z;;. Since ¢ is irredundant, all the intermediate
results of the computation and ¢" are irredundant. Thus, we can immediately
reject whenever an intermediate result gets larger than . Hence, the time
needed to compute ¥” is O(n) as n is an upper bound on the size of 1. When
there is no representative left we have to check whether ¢” and ¢ are identical.
This can be accomplished in time O(n?). O

Note that we have the same result with the number of clauses of ¢ as parameter
since we could simply exchange the roles of DNF and CNF.

3.3 Variable Frequencies as Parameter

For a MONET instance (i, 1) we denote by ¢ the largest number of monomials
over all variables x that do not include z, i.e.,

q= m€a§{|{u :x & p, where p is a monomial of ¢}|}.

We show that MONET is fixed-parameter tractable with ¢ as parameter.

Theorem 3.6 Let (p,1) be a MONET-instance of size n and q as defined
above. Then (p,1) € MONET can be decided in time O(29@718a+4) g3n 4 n3).

PROOF. For an irredundant monotone normal form ¢ we denote by o*=°
(resp. ¢®=') the normal form that is obtained by setting x to false (true)
and removing redundant terms. These irredundant forms ¢*=° and ¢*=! can
be easily computed in quadratic time.

Note that testing (p,7%) € MONET is equivalent to testing (©*=% *=0) €
MONET and (p*=!,¢*=!) € MONET for any variable z from . Our fixed-
parameter algorithm exactly processes these tests. Note that setting z = 0
yields a DNF ¢*=% with at most ¢ monomials. Hence, we can apply Theo-
rem 3.5 and decide (¢"=°,¢4*=%) € MONET in time O(2147184+4) g3 4 n?2),

For the second test we recursively call the algorithm with (©*=!,4*=!) as input.
Note that ¢*=! contains at most n — 1 variables. If ©*=! does not contain any
variable, the equivalence test is trivial. Hence, there are at most n—1 recursive
calls which results in an overall running time of O (294718 a4 43p 4 n3). O

Note that again the roles of DNF and CNF may be exchanged to get the
statement for variable frequencies in ¢ as well. Furthermore, the algorithm
runs in polynomial time if ¢ is a constant. This yields a new polynomial time
special case of MONET.

4 Conclusion

We have shown MONET to be fixed-parameter tractable for the parameters
number v of variables in ¢ and ¢/, number m of monomials in ¢, and a param-
eter ¢ describing the variable frequencies in ¢. Obvious open questions are to
further improve the running times. Especially interesting would be algorithms
with running times that are subexponential in the parameters.

Furthermore of interest are parameterized results for other parameters like the
size of a largest monomial.

Acknowledgments I thank Martin Mundhenk and the anonymous referee
for their valuable comments and suggestions that helped to improve the paper.

References

[1] J. C. Bioch and T. Ibaraki. Complexity of identification and dualization of
positive Boolean functions. Information and Computation, 123(1):50-63, 1995.

[2] E. Boros, P. L. Hammer, T. Ibaraki, and K. Kawakami. Polynomial-time
recognition of 2-monotonic positive Boolean functions given by an oracle. STAM
Journal on Computing, 26(1):93-109, 1997.

[3] P. Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. Theoretical Computer Science, 351(3):337-350, 2006.

[4] J. P. Delgrande and A. Gupta. The complexity of minimum partial truth
assignments and implication in negation-free formulae. Annals of Mathematics
and Artificial Intelligence, 18(1):51-67, 1996.

[5] T.Eiter. Exact transversal hypergraphs and application to Boolean p-functions.
Journal of Symbolic Computation, 17(3):215-225, 1994.

[6] T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph
and related problems. SIAM Journal on Computing, 24(6):1278-1304, 1995.

[7] T. Eiter and G. Gottlob. Hypergraph transversal computation and related
problems in logic and Al. In S. Flesca, S. Greco, N. Leone, and G. lanni,
editors, Logics in Artificial Intelligence, Furopean Conference, JELIA 2002,
Cosenza, Italy, September, 23-26, Proceedings, volume 2424 of Lecture Notes in
Computer Science, pages 549-564. Springer, 2002.

[8] T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and
generating hypergraph transversals. SIAM Journal on Computing, 32(2):514—
537, 2003.

[9] M. L. Fredman and L. Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms, 21(3):618-628, 1996.

[10] H. Garcia-Molina and D. Barbard. How to assign votes in a distributed system.
Journal of the ACM, 32(4):841-860, 1985.

[11] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-
Wesley, 1994.

[12] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining,
hypergraph transversals, and machine learning. In Proceedings of the Sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, May 12-1/4, 1997, Tucson, Arizona, pages 209-216. ACM Press, 1997.

[13] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On generating all
maximal independent sets. Information Processing Letters, 27(3):119-123, 1988.

[14] D. J. Kavvadias and E. C. Stavropoulos. Monotone Boolean dualization is in
coNP[log? n]. Information Processing Letters, 85(1):1-6, 2003.

[15] D. J. Kavvadias and E. C. Stavropoulos. = An efficient algorithm for
the transversal hypergraph generation. Journal of Graph Algorithms and
Applications, 9(2):239-264, 2005.

[16] E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Generating all maximal
independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal
on Computing, 9(3):558-565, 1980.

[17] K. Makino and T. Ibaraki. The maximum latency and identification of positive
Boolean functions. STAM Journal on Computing, 26(5):1363-1383, 1997.

[18] H. Mannila and K.-J. Raihd. On the complexity of inferring functional
dependencies. Discrete Applied Mathematics, 40(2):237-243, 1992.

[19] R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford University
Press, 2006.

[20] C. H. Papadimitriou. NP-completeness: A retrospective. In P. Degano,
R. Gorrieri, and A. Marchetti-Spaccamela, editors, Automata, Languages and
Programming, 24th International Colloquium, ICALP’97, Bologna, Italy, 7-11
July 1997, Proceedings, volume 1256 of Lecture Notes in Computer Science,
pages 2—6. Springer, 1997.

[21] W. Quine. Two theorems about truth functions. Boletin de la Sociedad
Matemdtica Mezicana, 10:64-70, 1953.

[22] S. Sarkar and K. N. Sivarajan. Hypergraph models for cellular mobile
communication systems. IEEE Transactions on Vehicular Technology,

47(2):460-471, 1998.

