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Abstract

The computation of all minimal transversals of a given hypergraph in output-
polynomial time is a long standing open question known as Transversal Hyper-
graph Generation. One of the first attempts on this problem—the sequential
method [Ber89]—is not output-polynomial as was shown by Takata [Tak07]. Re-
cently, three new algorithms improving the sequential method were published and
experimentally shown to perform very well in practice [BMR03,DL05,KS05]. Nev-
ertheless, a theoretical worst-case analysis has been pending. We close this gap by
proving lower bounds for all three algorithms. Thereby, we show that none of them
is output-polynomial.
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1 Introduction

Transversal Hypergraph Generation is the problem to compute, for
a given hypergraph H with vertex set V , the transversal hypergraph Tr(H)
that consists of all minimal subsets of V having a non-empty intersection with
each hyperedge of H. This problem has many applications in such different
fields like artificial intelligence and logic [EG95,EG02], computational biol-
ogy [Dam06,KSG07,HKS08], computational geometry [KBE+07,KBEG08b],
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cryptography [KP04], database theory [MR92], data mining [GKM+03], dis-
tributed computing [GB85], e-commerce [ZB06], machine learning [GKMT97],
mathematical programming [KBEG08a,Kha00], mobile communication sys-
tems [SS98], semantic web [KLM07], topology [DHSW03], and XML [Tri08],
to name but a few. For a more detailed list of related problems and respective
references see [Hag08, Chapter 3].

Due to the importance of Transversal Hypergraph Generation there
have been various approaches to solve it. But since the size of Tr(H) may
be exponential in the size of H, we cannot find an algorithm that runs in
time polynomial in the size of the input H. Therefore, another notion of effi-
cient solvability has to be used. An algorithm is said to be output-polynomial
if its running time is bounded polynomially in the size of the input and out-
put [JPY88]. Finding an output-polynomial algorithm for Transversal Hy-
pergraph Generation is a long standing open problem [Pap97]. Moreover,
note that the decision version of the problem—given two hypergraphs, decide
if one is the transversal hypergraph of the other—is one of the very few prob-
lems that currently cannot be classified as polynomial or NP- resp. coNP-hard.
The best known algorithms run in time no(log n) [FK96,Elb08] or use O(log2 n)
many nondeterministic bits [EGM03,KS03].

One of the earliest approaches is the sequential method [Ber89]. It computes
the transversal hypergraph by iteratively combining transversals of specific
subhypergraphs of the input in a brute-force manner. The worst-case analysis
of the sequential method took many years until Takata showed that it is not
output-polynomial [Tak07]. So far, this is the only proven nontrivial lower
bound for any algorithm for Transversal Hypergraph Generation.

In recent years, several improvements of the sequential method have been
published. We focus on the DL-algorithm of Dong and Li [DL05], the BMR-
algorithm of Bailey, Manoukian, and Ramamohanarao [BMR03], and the KS-
algorithm of Kavvadias and Stavropoulos [KS05]. All three algorithms have
been empirically tested on practical instances. Especially the BMR-algorithm
performs very well on instances from the data mining field. But while the
practical performance of the algorithms has been examined, a theoretical
worst-case analysis of their running times has been pending. We close this
gap by giving nontrivial lower bounds for all three algorithms. Furthermore,
the bounds show that none of the three algorithms is output-polynomial.

The paper is organized as follows. Section 2 contains some basic definitions, a
brief recapitulation of the sequential method and its analysis by Takata. In Sec-
tion 3 we show the DL- and the BMR-algorithm not to be output-polynomial.
Section 4 contains the analysis of the KS-algorithm. Some concluding remarks
follow in Section 5.
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2 Basic Definitions and the Sequential Method

A hypergraph H = (V, E) consists of a set V of vertices and a finite family E of
subsets of V —the edges. If there is no danger of ambiguity, we also use the edge
set to refer toH. The size ofH is the total number of occurrences of vertices in
the edges. A transversal of H is a set t ⊆ V that has a non-empty intersection
with each edge of H. A transversal t is minimal if no proper subset of t is
a transversal. The set of all minimal transversals of H forms the transversal
hypergraph Tr(H). A hypergraph H is simple if it does not contain two hyper-
edges e, f with e ⊆ f . By min(H) we denote the simple hypergraph consisting
of the minimal hyperedges of H with respect to set inclusion. Since min(H)
can be easily computed in polynomial time and Tr(H) = Tr(min(H)) holds
for every hypergraph H, we concentrate on Transversal Hypergraph
Generation for simple hypergraphs. But even for simple hypergraphs the
size of the transversal hypergraph may be exponential. Hence, there cannot
be an algorithm computing the transversal hypergraph in polynomial time.
A suitable notion of efficient solvability for such kind of problems is that of
output-polynomial time [JPY88]. An algorithm is said to be output-polynomial
if its running time is bounded polynomially in the sum of the sizes of the input
and output.

Given simple hypergraphs H = {e1, e2, . . . , em} and H′ = {e′1, e′2, . . . , e′m′}
there are two different “unions”, namely

H ∪H′ = {e1, e2, . . . , em, e′1, e
′
2, . . . , e

′
m′} and

H ∨H′ = {ei ∪ e′j : i = 1, 2, . . . ,m, j = 1, 2, . . . ,m′}.

Proposition 2.1 ([Ber89]) Let H and H′ be two simple hypergraphs. Then
Tr(H ∪H′) = min(Tr(H) ∨ Tr(H′)).

The sequential method [Ber89] uses Proposition 2.1 to generate the transver-
sal hypergraph as follows. For a hypergraph H = {e1, e2, . . . , em} let Hi =
{e1, e2, . . . , ei}, i = 1, 2, . . . ,m. We then have

Tr(Hi) = min(Tr(Hi−1) ∨ Tr({ei})) = min(Tr(Hi−1) ∨ {{v} : v ∈ ei})

and Tr(H) = Tr(Hm). This implies a straightforward iterative computation
process—the sequential method. A pseudocode listing is given in Algorithm 1.
Despite the simplicity of the sequential method it took a couple of decades
until Takata [Tak07] presented a nontrivial lower bound using the following
inductively defined family of hypergraphs.
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Algorithm 1 The Sequential Method

1: Tr(H1)← {{v} : v ∈ e1}
2: for i← 2, . . . ,m do
3: Tr(Hi)← min(Tr(Hi−1) ∨ {{v} : v ∈ ei})
4: end for
5: output Tr(Hm)

G0 = {{v1}} and

Gi = (A ∪ B) ∨ (C ∪ D),

where A,B, C,D are vertex-disjoint copies of Gi−1.

Takata showed the sequential method not to be output-polynomial based on
the following observations.

Lemma 2.2 ([Tak07]) We have |VGi
| = 4i, |Gi| = 22(2i−1), |Tr(Gi)| =

22i−1. For i ≥ 2 and any e ∈ Gi, it holds that |Tr(Gi\{e})\Tr(Gi)| ≥ 2(i−2)2i+2.

From Lemma 2.2 it follows that, independent of the edge ordering, the penul-
timate (intermediate) result computed by the sequential method on input Gi

is superpolynomial in the size of the input and output (cf. the original pa-
per [Tak07] for more details).

Very recently, Boros et. al. [BEM08] proved a subexponential n
√

n upper bound
on the running time of the Berge-multiplication.

3 The Algorithms of Dong and Li, and Bailey, Manoukian and
Ramamohanarao

The border-differential algorithm of Dong and Li [DL05] comes from the data
mining field and is intended for mining emerging patterns. The analogy to
the generation of hypergraph transversals was already pointed out by Bailey,
Manoukian, and Ramamohanarao [BMR03]. A pseudocode listing of the DL-
algorithm is given in Algorithm 2.

The algorithm was experimentally evaluated on many practical data mining
cases [DL05] whereas a theoretical analysis of the running time was left open.
For this purpose the conversion of the algorithm to the hypergraph setting is
very fruitful. The only observable difference between the sequential method
and the DL-algorithm is that the DL-algorithm takes special care on how to
perform the minimization of Tr(Hi−1) ∨ {{v} : v ∈ ei}. But as Takata’s anal-
ysis showed, the minimization is not the bottleneck of the sequential method.
Thus, we can extend Takata’s analysis of the sequential method in a straight-
forward way to the DL-algorithm and get the same lower bound.
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Algorithm 2 The DL-Algorithm

1: Tr(H1)← {{v} : v ∈ e1}
2: for i← 2, . . . ,m do
3: Tguaranteed ← {t ∈ Tr(Hi−1) : t ∩ ei 6= ∅}
4: ecovered

i ← {v ∈ ei : {v} ∈ Tguaranteed}
5: Tr(Hi−1)

′ ← Tr(Hi−1) \ Tguaranteed

6: e′i ← ei \ ecovered
i

7: for all t′ ∈ Tr(Hi−1)
′ in increasing cardinality order do

8: for all v ∈ e′i do
9: if t′ ∪ {v} is not superset of any t ∈ Tguaranteed then

10: Tguaranteed ← Tguaranteed ∪ {t′ ∪ {v}}
11: end if
12: end for
13: end for
14: Tr(Hi)← Tguaranteed

15: end for
16: output Tr(Hm)

Theorem 3.1 The DL-algorithm is not output-polynomial. Its running time
is at least nΩ(log log n), where n denotes the size of the input and output.

Nevertheless, for hypergraphs with only a few edges of small size the DL-algo-
rithm has been shown experimentally to perform well [DL05]. This property is
exploited by the BMR-algorithm [BMR03] (cf. Algorithm 3 for the listing) as it
uses the DL-algorithm as a subroutine that computes all minimal transversals
for small hypergraphs (line 16 of the listing). The BMR-algorithm on input
H is invoked by the top-level call with the set E of edges of H and an empty
set Vpart. The global variable T is initially empty.

Before calling the DL-algorithm, the BMR-algorithm ensures that the hyper-
graph has only few edges of small size. If this is not yet the case, the BMR-
algorithm reduces the number of edges and their size by recursively deriving
smaller hypergraphs from H (line 14). This is achieved by partitioning the
edge set and masking out vertices that are more frequent than the actual par-
titioning vertex vi (lines 5 to 10). If the hypergraph is small, the DL-algorithm
computes all minimal transversals (line 16). These transversals are expanded
by the current partitioning vertices Vpart (line 17) since the result is a transver-
sal of H. The global variable T contains all the minimal transversals of the
hypergraph H when the algorithm stops.

A bottleneck for the running time of the BMR-algorithm is that possibly many
of the recursively computed transversals—the set T ′ in the listing—actually
are not minimal for the input hypergraph H. We concentrate on this issue and
construct a family G ′i of hypergraphs for which the BMR-algorithm computes
too many such non-minimal transversals to run in output-polynomial time.

5



Algorithm 3 The BMR-Algorithm

Input: a simple hypergraph, given by the set E of its hyperedges, and a
set Vpart of partitioning vertices

1: V ← set of all vertices in E
2: order vertices by increasing number of occurrences in E ⇒ [v1, . . . , vk]
3: for i← 1, . . . , k do
4: Epart ← ∅
5: V ← V \ {vi}
6: for all e ∈ E do
7: if vi 6∈ e then
8: Epart ← min(Epart ∪ {e \ V })
9: end if

10: end for
11: Vpart ← Vpart ∪ {vi}
12: a← average edge cardinality of Epart multiplied by |Epart|
13: if |Epart| ≥ 2 and a ≥ 50 then
14: recursively call the BMR-algorithm on input Epart, Vpart

15: else
16: compute Tr(Epart) via the DL-algorithm
17: T ′ ← Tr(Epart) ∨ {Vpart}
18: T ← min(T ∪ T ′)
19: end if
20: Vpart ← Vpart \ {vi}
21: end for
22: return T

Let G ′(i) = {ei, fi}, where ei = {vi2−i+1, . . . , vi2} and fi = {vi2+1, . . . , vi2+i}.
We inductively define

G ′1 = {{v1}, {v2}}, and

G ′i = (G ′i−1 ∪ {{wi}}) ∨ G ′(i), for i ≥ 2.

Note that G ′i−1, {{wi}} and G ′(i) are pairwise vertex-disjoint simple hyper-
graphs for i ≥ 2. To calculate the size of G ′i and of Tr(G ′i) we have to solve
the recurrences |G ′i| = 2 · |G ′i−1| + 2 and |Tr(G ′i)| = |Tr(G ′i−1)| + i2. With the
initial conditions |G ′1| = 2 and |Tr(G ′1)| = 1 we obtain

|G ′i| = 2i+1 − 2 and |Tr(G ′i)|=
2i3 + 3i2 + i

6

by iteration. As for the number |VG′
i
| of vertices of G ′i, we have |VG′

i
| = i2+2i−1.

The BMR-algorithm iteratively partitions the input hypergraph to obtain
smaller hypergraphs where the transversal generation is feasible. The par-
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titioning depends on the vertex frequencies. Hence, we first have to analyze
the frequencies of the vertices in G ′i.

Lemma 3.2 For i ≥ 2 let #v(i, j) and #w(i, j) respectively denote the number
of occurrences of vertices vj and wj in G ′i. Then

#w(i, j) = 0, for j > i,

#v(i, j) = 0, for j > i2 + i,

#w(i, 2) = #v(i, 1) = #v(i, 2),

#w(i, j) > #w(i, j + 1), for 2 ≤ j < i,

#v(i, j) = #v(i, k), for l2 − l + 1 ≤ j ≤ k ≤ l2 + l, with 1 ≤ l ≤ i,

#v(i, j) < #v(i, k), for 1 ≤ j < l2 − l + 1 ≤ k ≤ l2 + l, with 2 ≤ l ≤ i.

PROOF.

(1) We have the obvious equations

#w(i, j) = 0, for j > i, and #v(i, j) = 0, for j > i2 + i,

as neither wj, for j > i, nor vj, for j > i2 + 1, are vertices of G ′i.

(2) Another easy case is

#w(i, 2) = #v(i, 1) = #v(i, 2), for i ≥ 2,

as it is not difficult to show that all three values are equal to 2i−1.

(3) The next inequality

#w(i, j) > #w(i, j + 1), for 2 ≤ j < i,

also is straightforward as we have #w(i, j) = 2i−j+1 for 2 ≤ j ≤ i.

(4) We next consider

#v(i, j) = #v(i, k), for l2 − l + 1 ≤ j ≤ k ≤ l2 + l, with 1 ≤ l ≤ i.

The proof is by induction on i. Let i = 2. In this case, from the definition
of G ′2, we have 2 = #v(2, 1) = #v(2, 2), and 3 = #v(2, 3) = #v(2, 4) =
#v(2, 5) = #v(2, 6). So let the equation hold for i = m− 1. We will show
it for i = m. From the definition of G ′m we have #v(m, j) = 2·#v(m−1, j)
for every j < m2−m+1. Hence, for 2 ≤ l < m the equation follows from
our assumption.

From the definition of G ′m we also have #v(m, j) = |G ′m−1| + 1 for
m2 −m + 1 ≤ j ≤ m2 + m. Hence, the equation follows for l = m.
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(5) The last inequality to prove is

#v(i, j) < #v(i, k) for 1 ≤ j < l2 − l + 1 ≤ k ≤ l2 + l, with 2 ≤ l ≤ i.

Again, the induction is on i. Let i = 2. From the definition of G ′2 we have
#v(2, 1) = #v(2, 2) = 2 < 3 = #v(2, 3) = #v(2, 4) = #v(2, 5) = #v(2, 6).
Let us assume that the inequality holds for i = m− 1. We have to prove
it for i = m.

First, we consider the case l < m. From the definition of G ′m we have
#v(m, j) = 2 · #v(m − 1, j) for all j < l2 − l + 1 and #v(m, k) = 2 ·
#v(m− 1, k) for all l2− l + 1 ≤ k ≤ l2 + l. Together with the assumption
this yields the inequality for the case l < m.

Secondly, we have to examine the case l = m. Let us consider the
vertex vm2−m, the vertex from G ′m−1 in G ′m with the largest index. From
the case l < m we known that vm2−m is one of the most frequent vertices
of G ′m−1 in G ′m. To complete the proof it suffices to show #v(m, m2 −
m) < #v(m, m2−m + 1) as we know from Equation (4) and the already
established “l < m”-case. From the definition of G ′m and G ′m−1 we have

#v(m, m2 −m) = 2 · (|G ′m−2|+ 1), and

#v(m, m2 −m + 1) = |G ′m−1|+ 1.

With |G ′i| = 2i+1 − 2 this gives

#v(m, m2 −m) = 2m − 2, and

#v(m, m2 −m + 1) = 2m − 1.

Hence, we have #v(m, m2 −m) < #v(m, m2 −m + 1).

Thus, the proof of Lemma 3.2 is completed. 2

From Lemma 3.2 it follows that the vertices from G ′(i) are the last vertices
in the vertex ordering computed by the BMR-algorithm on input G ′i. This is
crucial for the next step of our analysis in which we examine the recursive
calls produced by the BMR-algorithm on input G ′i.

Lemma 3.3 For i ≥ 4, the BMR-algorithm on input G ′i recursively calls the
BMR-algorithm at least 2i times with a modified G ′i−1∪{{wi}} as input. Here,
modified means that all edges of G ′i−1 ∪ {{wi}} may additionally include at
most half of the vertices of G ′(i).

PROOF. We only examine the last 2i vertices processed by the BMR-al-
gorithm. From Lemma 3.2 we know that these are exactly the vertices from
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G ′(i)—contained in the edges ei and fi. Let v′1, v
′
2, . . . , v

′
2i be any ordering of

these vertices. We consider the BMR-algorithm on that ordering.

Let the j-th vertex v′j, 1 ≤ j ≤ 2i, from the above ordering be the current
partitioning vertex (line 3 of the BMR-algorithm). After partitioning (lines 5
to 10), the remaining hypergraph has the form

(G ′i−1 ∪ {{wi}}) ∨ {{v′1, . . . , v′j−1} ∩ xi},

where xi = fi if v′j ∈ ei, and xi = ei if v′j ∈ fi. Hence, the remaining hypergraph
always is a G ′i−1 ∪ {{wi}} with at most half of the vertices from G ′(i) in every
edge.

Altogether, for each of the last 2i vertices the minimal transversals of a mod-
ified G ′i−1 ∪ {{wi}} have to be computed. Note that a modified G ′3 ∪ {{w4}}
has 15 edges of average size at least 5.4 and thus a ≥ 81 (line 12). Hence, for
i ≥ 4 the last 2i vertices invoke recursive calls of the BMR-algorithm with a
modified G ′i−1 ∪ {{wi}} as input. 2

With Lemma 3.3 at hand we can analyze the number of non-minimal transver-
sals computed by the BMR-algorithm.

Lemma 3.4 Let i ≥ 4. For the number η(i) of non-minimal transversals
computed during a run of the BMR-algorithm on input G ′i we have η(i) ≥
2i−1 · i!.

PROOF. From Lemma 3.3 it follows that there are 2i recursive calls with a
modified G ′i−1 ∪ {{wi}} as input. Such a recursive call produces at least all of
the minimal and some non-minimal transversals of G ′i−1 ∪ {{wi}} augmented
by the current partitioning vertex as transversals for G ′i. But since at least
the partitioning vertex is dispensable in these transversals, none of them is
minimal for G ′i and thus will not be part of the final output. There are at least
η(i− 1) + |Tr(G ′i−1)| such non-minimal transversals per recursive call. Hence,
we have to solve the recurrence

η(i)≥ 2i · (η(i− 1) + |Tr(G ′i−1)|)
≥ 2i · η(i− 1).

As for the initial condition we have the following.

Claim 3.5 η(3) = 34.

PROOF. We have

9



G ′1 = {{v1}, {v2}}, G ′2 = {{v1, v3, v4}, {v2, v3, v4}, {w2, v3, v4},
{v1, v5, v6}, {v2, v5, v6}, {w2, v5, v6}},

G ′3 = {{v1, v3, v4, v7, v8, v9}, {v2, v3, v4, v7, v8, v9}, {w2, v3, v4, v7, v8, v9},
{v1, v5, v6, v7, v8, v9}, {v2, v5, v6, v7, v8, v9}, {w2, v5, v6, v7, v8, v9},
{w3, v7, v8, v9},
{v1, v3, v4, v10, v11, v12}, {v2, v3, v4, v10, v11, v12},
{w2, v3, v4, v10, v11, v12}, {v1, v5, v6, v10, v11, v12},
{v2, v5, v6, v10, v11, v12}, {w2, v5, v6, v10, v11, v12},
{w3, v10, v11, v12}}.

We examine the BMR-algorithm with G ′3 as input. Without loss of generality
we assume that the order in which the BMR-algorithm processes the vertices
is w3, w2, v1, v2, v3, . . . , v12. When using w3, w2, or v1 as partitioning vertex,
nothing happens since the resulting hypergraph is empty.

The next partitioning vertex is v2 and there remains the hypergraph with the
three edges {w3}, {w2}, and {v1}. The DL-algorithm is invoked and outputs
one minimal transversal, which is augmented by v2. The resulting transversal
is minimal for G ′3.

When using v3 or v4 as partitioning vertex, there remains the hypergraph with
the four edges {w3}, {w2}, {v1}, and {v2}. The DL-algorithm computes the
minimal transversal of this hypergraph, which is augmented by v3 and re-
spectively v4. Obviously, the resulting transversals are not minimal since they
contain the minimal transversal {w3, w2, v1, v2}. Hence, the BMR-algorithm
has computed two non-minimal transversals of G ′3.

When using v5 or v6 as partitioning vertex, there remains the hypergraph
with the four edges {w3}, {w2, v3, v4}, {v1, v3, v4}, and {v2, v3, v4}. The DL-
algorithm computes the three minimal transversals {w3, v3}, {w3, v4}, and
{w3, w2, v1, v2} and augments them by v5 and respectively v6. This yields four
minimal transversals of G ′3 and another two not minimal transversals of G ′3.

When using v7, v8, or v9 as partitioning vertex, there remains a G ′2 ∪ {{w3}}.
Each time, the DL-algorithm is invoked to compute all five minimal transver-
sals of G ′2 ∪ {{w3}}. Each such computed minimal transversal of G ′2 ∪ {{w3}}
is augmented by the current partitioning vertex. The resulting transversal is
not minimal for G ′3 since already the minimal transversals of G ′2 ∪ {{w3}} are
minimal for G ′3. Hence, the algorithm produces 15 non-minimal transversals
for the vertices v7, v8, and v9.

As for the vertices v10, v11, and v12 there remains a (G ′2∪{{w3}})∨{v7, v8, v9}
after partitioning. For each such modified G ′2 ∪ {{w3}} the DL-algorithm as a
subroutine is invoked to compute the minimal transversals since a = 40 < 50
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(line 12 of the BMR-algorithm). For each such call the DL-algorithm produces
all five minimal transversals of G ′2∪{{w3}} plus the three minimal transversals
{v7}, {v8}, {v9}. Each such computed transversal is augmented by the current
partitioning vertex. This yields nine minimal transversals of G ′3 and another
15 non-minimal transversals.

Altogether, the BMR-algorithm with input G ′3 computes 34 non-minimal trans-
versals. This yields η(3) = 34. 2

Hence, η(3) ≥ 22 · 3! and we get η(i) ≥ 2i−1 · i! by iteration. 2

Putting all pieces together we are able to give a superpolynomial lower bound
on the running time of the BMR-algorithm.

Theorem 3.6 The BMR-algorithm is not output-polynomial. Its running time
is at least nΩ(log log n), where n denotes the size of the input and output.

PROOF. We consider the BMR-algorithm on input G ′i. By mi = |VG′
i
| ·(|G ′i|+

|Tr(G ′i)|) we denote an upper bound on the size of the input and output. For
i ≥ 22 we have

mi = (i2 + 2i− 1) ·
(

2i+1 − 2 +
2i3 + 3i2 + i

6

)
≤ 23i.

The running time of the BMR-algorithm on input G ′i is at least η(i), the

number of non-minimal transversals computed. Since i ≥ log mi

3
and i! ≥

(
i
e

)i
,

we get η(i) ≥ 2i−1 · i! = m
Ω(log log mi)
i . 2

4 The Algorithm of Kavvadias and Stavropoulos

A first drawback of the sequential method or the BMR-algorithm that Kavva-
dias and Stavropoulos [KS05] observe is the memory requirement. Since newly
computed transversals have to be checked for minimality against the previ-
ously computed minimal transversals, all the previously generated minimal
transversals have to be stored. The KS-algorithm tries to overcome this po-
tentially exponential memory requirement by two techniques. The first is to
combine vertices that belong exactly to the same hyperedges.

Definition 4.1 (generalized vertex, [KS05]) Let H be a hypergraph with
vertex set V . The set X ⊆ V is a generalized vertex of H if all vertices in X
belong to exactly the same hyperedges of H.
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A transversal possibly containing generalized vertices will be referred to as
generalized transversal. While adding edge ei, and hence generating the mini-
mal generalized transversals of Hi out of the minimal generalized transversals
ofHi−1, the generalized vertices have to be updated according to ei. Kavvadias
and Stavropoulos characterize the following three types of generalized vertices
X of a minimal generalized transversal t of Hi−1.

• type α: X ∩ ei = ∅. Hence, X is a generalized vertex of Hi.
• type β: X ⊂ ei. Hence, X is a generalized vertex of Hi.
• type γ: X ∩ ei 6= ∅ and X 6⊂ ei. Here, X is divided into X1 = X \ (X ∩ ei)

and X2 = X ∩ ei. Both X1 and X2 are generalized vertices of Hi.

Let κα(t, i), κβ(t, i), and κγ(t, i) denote the number of generalized vertices
of type α, β, and γ in t according to ei. When edge ei is added, the mini-
mal generalized transversal t of Hi−1 has to be split into 2κγ(t,i) generalized
transversals of Hi−1—the so-called offsprings of t—since all combinations of
newly generalized vertices have to be generated. If κβ(t, i) 6= 0, all these newly
generated offsprings are also minimal transversals of Hi. But if κβ(t, i) = 0,
there is a special offspring t0 of t that contains all the X1-parts of the γ-type
generalized nodes of t. Hence, t0 ∩ ei = ∅ and t0 has to be augmented by a
vertex from ei to be a transversal of Hi. All the other offsprings of t already
are minimal transversals of Hi since they contain at least one X2-part of a
generalized vertex from t.

The second technique to overcome the potentially exponential memory re-
quirement is based on the observation that the sequential method is a form of
breadth-first search through a “tree” of minimal transversals. At the ith-level
of the “tree” the nodes are the minimal transversals of the partial hypergraph
Hi. The descendants of a minimal transversal t at level i are the minimal
transversals of Hi+1 that include t. Note that, since a node at level i + 1 may
have several ancestors at level i, the structure is not really a tree but very
tree-like. The bottom level consists of the minimal transversals of H. When
cycling through this “tree” breadth-first, one has to wait very long for the first
minimal transversal to be output and some nodes are visited several times be-
cause they have more than one ancestor. To overcome the long time that
may pass till the first minimal transversal is output, the KS-algorithm uses
a depth-first strategy. And to really cycle through a tree and not a tree-like
structure with some cycles, Kavvadias and Stavropoulos introduce the notion
of so-called appropriate vertices.

Definition 4.2 (appropriate vertex, [KS05]) Let H = {e1, . . . , em} be a
hypergraph with vertex set V and let t be a minimal transversal of the partial
hypergraph Hi of H. A generalized vertex v ⊆ V \ t at level i is an appro-
priate vertex for t if no other vertex in t ∪ {v} except v can be removed and
the remaining set still be a transversal of Hi. The set appr(t, e) contains all
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appropriate vertices for t in edge e.

Note that the special offspring t0 of a minimal generalized transversal t of
Hi−1 has to be augmented by a vertex from appr(t, ei) only. All the other ver-
tices from ei can be skipped. Expanding only with appropriate vertices ensures
that no non-minimal transversals are generated and avoids regenerations. An-
other advantage is that the previously described transversal “tree” structure
becomes a real tree (cf. the original paper [KS05] for more details).

All the described techniques—generalized vertices, depth-first strategy, ap-
propriate vertices—together with the main idea of the sequential method—
processing the edges one after the other—are used in the KS-algorithm (cf.
Algorithm 4 for the listing) and yield a space requirement (the size of the
output does not count) that is only polynomial in the input size [KS05].

After computing a first transversal (only one since it consists of a generalized
vertex), the recursive AddNextHyperedge procedure is called (note that
t′ is a global variable). Due to the usage of generalized vertices the expansion
of t is divided into two parts according to the presence (line 18 of the listing)
or absence (line 25) of a generalized vertex of type β in t. If the minimal
transversal t of Hi−1 contains a generalized vertex of type β, all its offsprings
intersect ei and hence are minimal transversals of Hi (lines 19 to 24). If t does
not contain a type β vertex, all its offsprings except t0 intersect ei and hence
are minimal for Hi (lines 26 to 28). The offspring t0 has to be augmented by
every appropriate vertex (line 30).

The effect as shown by Kavvadias and Stavropoulos is that a newly gener-
ated transversal is minimal and that regenerations are avoided [KS05]. Since
the KS-algorithm uses a depth-first strategy, it does not have to store all
the minimal transversals of the subhypergraph Hi−1 to compute the minimal
transversals of Hi. This yields a space requirement of the KS-algorithm that
is polynomial in the input size |H| [KS05].

As for the running time, the KS-algorithm is experimentally shown [KS05] to
be competitive to the sequential method, the BMR-algorithm, and an imple-
mentation of Algorithm A of Fredman and Khachiyan [BEGK03,FK96]. We
will show that the KS-algorithm is not output-polynomial.

First, we note that there are situations in which the KS-algorithm cannot find
an appropriate vertex. Consider for example the hypergraph

H = {{v1, v5}, {v2, v5}, {v3, v6}, {v4, v6}, {v5, v6}}.

Having processed all but the last edge, there are no generalized vertices left.
We concentrate on the path down the transversal tree that corresponds to
choosing v1, v2, v3, and v4. The intermediate transversal is t = {v1, v2, v3, v4}.

13



Algorithm 4 The KS-Algorithm

1: express e1 as a set of one generalized vertex
2: compute the transversal t = Tr(e1)
3: AddNextHyperedge(t, e2)

4: procedure AddNextHyperedge(t, ei)
5: update the set of generalized vertices
6: express t and ei as sets of generalized vertices of level i
7: l← 1
8: while GenerateNextTransversal(t, l) do
9: if ei is the last hyperedge then

10: output t′ without using generalized vertices
11: else
12: AddNextHyperedge(t′, ei+1)
13: l← l + 1
14: end if
15: end while
16: end procedure

17: function GenerateNextTransversal(t, l)
18: if κβ(t, i) 6= 0 then
19: if l ≤ 2κγ(t,i) then
20: t′ ← the l-th offspring of t
21: return true

22: else
23: return false

24: end if
25: else if κβ(t, i) = 0 then
26: if l ≤ 2κγ(t,i) − 1 then
27: t′ ← the l-th offspring of t except t0
28: return true

29: else if 2κγ(t,i) ≤ l ≤ 2κγ(t,i) − 1 + |appr(t, ei)| then
30: t′ = t0 augmented by the (l−2κγ(t,i) +1)-th vertex of appr(t, ei)
31: return true

32: end if
33: else
34: return false

35: end if
36: end function

The only edge left is {v5, v6}. But the KS-algorithm cannot find an appropriate
vertex in this edge for t. Hence, there are dead ends in the tree, namely leaves
that do not contain a minimal transversal of the input H. The next step is to
find hypergraphs with too many such dead ends.

14



Lemma 4.3 For i ≥ 3, the number of dead ends the KS-algorithm has to visit
for any of Takata’s hypergraphs Gi as input is at least 2(i−2)2i+1, independent
of the edge ordering.

PROOF. Consider the hypergraph family Gi of Takata defined in Section 2.
First note that when the KS-algorithm adds the last edge of Gi, there are
no proper generalized vertices left (generalized vertices that are not singleton
sets). We want to argue that the same already holds for the penultimate step,
hence, that Gi \ {e} has no proper generalized vertex, for any edge e ∈ Gi.
Assume otherwise that after processing all of Gi \ {e}’s edges there remains a
proper generalized vertex X ⊆ V . As Gi has no proper generalized vertices, we
have X ⊆ e. Let e be composed of the A and C component in Gi’s definition
(the argumentation is analogous for the other cases) and consider two different
vertices v, u ∈ X. If both v and u are vertices in the A component we have a
contradiction as already A contains an edge f that contains v but not u. This
edge appears in |C| + |D| edges of Gi \ {e}. Hence, not both v and u can be
vertices in X as they would have been split according to the f copies in prior
steps of the KS-algorithm’s run (an analogous argumentation shows that not
both are in C).

The remaining possibility (minus symmetry) is that v is from A and u is from
C. But note that Gi \ {e} contains an edge f with v ∈ f but f is composed
of the A and D part of Gi. Again, this shows that not both v and u can be
vertices in X as they would have been split in a prior step.

Altogether, we now know that before processing the last edge, there cannot
be proper generalized vertices in Gi \ {e}. From Lemma 2.2 it follows that,
whatever ordering of the edges is chosen, there are at least 2(i−2)2i+2 nodes in
the penultimate level of the transversal tree described above Definition 4.2.
The bottom level of the tree obviously contains |Tr(Gi)| many nodes—one for
each minimal transversal. Since |Tr(Gi)| = 22i−1 (cf. Lemma 2.2), there is a
decrease in the number of nodes from the penultimate level to the bottom level
for i ≥ 3. This decrease can only be caused by dead ends in the penultimate
level. Hence, for i ≥ 3 there are at least 2(i−2)2i+2 − 22i−1 ≥ 2(i−2)2i+1 many
dead ends in the penultimate level. 2

Using Lemma 4.3 we can show that the KS-algorithm is not output-polyno-
mial.

Theorem 4.4 The KS-algorithm is not output-polynomial. Its running time
is at least nΩ(log log n), where n denotes the size of the input and output.
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PROOF. We consider the KS-algorithm on input Gi. By mi = |VGi
| · (|Gi| +

|Tr(Gi)|) we denote an upper bound on the size of Gi and Tr(Gi). From
Lemma 2.2 we have mi = 4i · (22(2i−1) + 22i−1), which results in mi ≤ 22i+2

.

Let η̂(i) denote the number of dead end situations visited by the KS-algorithm
on input Gi. The time, the KS-algorithm needs to compute Tr(Gi), is at least
the number of dead end situations visited. Since the KS-algorithm visits the
transversal tree depth-first, it visits all the dead end situations in the penul-
timate level of the tree. With Lemma 4.3 we have η̂(i) ≥ 2(i−2)2i+1 for i ≥ 3.
Thus, to analyze the running time we will show that η̂(i) is superpolynomial
in mi. It suffices to show that 2(i−2)2i

> (22i+2
)c, for any constant c. This is

equivalent to i − 2 > 4c, for any constant c. Since this obviously holds for
large enough i, we have proven that η̂(i) is superpolynomial in mi, namely

η̂(i) = m
Ω(log log mi)
i . 2

5 Concluding Remarks

We have proven superpolynomial lower bounds for the DL-, the BMR-, and the
KS-algorithm in terms of the size of the input and output. Thus, like the un-
derlying sequential method, these three algorithms are not output-polynomial.

We are not aware of any other nontrivial lower bounds for algorithms generat-
ing the transversal hypergraph although we suppose that none of the known
algorithms is output-polynomial. Extending the existing lower bounds to other
algorithms seems to be not that straightforward.

Consider for instance the multiplication method suggested by Takata [Tak07].
Very recently Elbassioni proved a quasi-polynomial upper bound on the run-
ning time [Elb06]. But giving a superpolynomial lower bound for the multi-
plication method requires the construction of new hypergraphs. Takata’s hy-
pergraphs Gi and our hypergraphs G ′i are solved too fast by the multiplication
method.

There are also no nontrivial lower bounds known for Algorithms A and B
of Fredman and Khachiyan [FK96]. Though Gurvich and Khachiyan [GK97]
note that it should be possible to give a superpolynomial lower bound for
Algorithm A using hypergraphs very similar to the Gi, the proof is still open.
Giving a lower bound for Algorithm B—considered to be the fastest known
transversal hypergraph algorithm—seems to be even more involved.
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