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Abstract—Given a set of keywords, we find a maximum Web
query (containing the most keywords possible) that respects user-
defined bounds on the number of returned hits. We assume a
real-world setting where the user is not given direct access to a
Web search engine’s index, i.e., querying is possible only through
an interface. The goal to be optimized is the overall number of
submitted Web queries.

One original contribution of our research is the formalization
and theoretical foundation of the problem. But, in particular, we
develop a co-occurrence probability informed search strategy for
the problem. The performance gain achieved with our approach
is substantial: compared to the uninformed baseline (without co-
occurrence information) the expected savings are up to 20% in
the number of submitted queries and runtime.

Keywords-Web Search, Query Formulation, Search Cost Opti-
mization, Maximum Query, Long Query Reduction

I. INTRODUCTION

Suppose a typical user of a Web search engine with an

information need for which she can come up with a set of

potential keywords. The user will submit a query containing

some of these words and expects a reply in the form of a

ranked result list along with an estimation of the total number

of results. Experience shows that very long queries return few

or even no hits while rather short Web queries are likely to

return millions of documents. Of course, such short queries

are often answered reasonably well, i.e., among the top-ranked

results the user has a good chance to find a matching item.

However, these “good-natured” queries are not the focus of

this paper; we address scenarios where the user is not satisfied

by the results of her initial query. This case is not uncommon,

and search engines provide different means of supporting users

in such a situation. Examples include query expansion for

queries returning lots of hits or spelling correction for queries

returning no hits due to typos. In this paper we present another

approach having a more combinatorial flavor, while being

easily combinable with existing technology: The maximum

query for a given set of keywords (a query containing as many

of the keywords as possible, while still returning a specified

number of results).

The rationale for considering maximum queries is as fol-

lows. The number of results a user will consider for a query is

usually constrained by a processing capacity lmax, determined

by the user’s reading time etc. If the user faces an underspecific

query with millions of hits, she can only check a fraction of the

results—typically the top-ranked ones. This puts the burden

of selecting the most informative documents on the search

engine’s ranking algorithm. If the ranking fails to provide rel-

evant documents on top, the user probably formulates a more

specific query by including more or different keywords. But

what subset of her potential keywords should the user select to

be sufficiently descriptive of her information need? We argue

that in such situations the most promising queries are the ones

that are sufficiently specific to not return millions of hits—but

also not just one or two. We suggest to use a maximum query

for a set of keywords, i.e., a query being maximally specific

(containing as many keywords as possible) while still returning

a reasonable number of results (at most lmax). The user can

then check the entire result list and will not miss any potential

match for her information need due to search engine ranking

issues that she cannot influence.

Obviously, several queries have to be submitted to identify

a maximum query. We solve the problem taking the user

perspective, i.e., we give algorithms that are not restricted to

be implemented at search engine site. In fact, our algorithms

are of external nature and just use the standard search engine

interfaces. These interfaces usually do not offer direct access

to the engine’s index and a user has incomplete or even no

knowledge of the underlying retrieval model, implementation

details, etc. The search engine appears as a black box, acting

like an oracle that answers queries. Furthermore, querying is

not for free but entails costs—at the very least some non-

negligible amount of time is consumed, and monetary charges

come into play for larger contingents of queries. We analyze

the corresponding economic optimization problem for finding

maximum queries:

What (automatic) search strategy minimizes the average

number of submitted queries?

The following use cases illustrate that maximum queries can

appear in different contexts.

A. Relevance and Applicability of Maximum Queries

Known Item Finding. Assume a user that once had access to

a document on the Web but now only can come up with a

set of keywords that she thinks occur in the document. Re-

finding the desired document can be tackled by automatically

constructing queries from the user’s keywords. These queries

should return at least a given number of hits; but also not

too many since then the expectation is that the query is not

descriptive enough to bring up the known item on the top of

the result list. Furthermore, some of the remembered phrases



might be wrong and should be omitted. A maximum query

provides a way-out.

Dealing with Overspecific Queries. Imagine a user whose Web

query did not return any hit when submitted to a Web search

engine. Thus, the query is overspecific. Interesting for such a

user could be the maximum subset of her query that would

still give a reasonable number of hits.

Search Sessions. A search session comprises the set of con-

secutive Web queries a user submits in order to satisfy her

information need. Longer search sessions indicate that the user

is not fully satisfied with the results so far. A potential reason

is that the user has chosen to query with “bad” combinations

of otherwise good keywords. Using a maximum query from

all the keywords submitted in the session could help.

B. Related Work

Maximum query formulation is very similar to the task of

long query reduction. Long query reduction comprises han-

dling verbose text queries (like description parts of TREC top-

ics or medical search engine queries) but also dealing with key-

word queries of more than 4 words. However, all the existing

research results on long query reduction [2, 3, 4, 5, 6, 7, 8, 9]

assume full access to a search engine’s index and thus do not

take into account the user’s costs for querying.

Two papers explicitly deal with the problem of finding

queries respecting a bound on the number of returned hits

for a given keyword set. Shapiro and Taksa [11] suggest a

rather simple open end query formulation approach for which

it is straightforward to find situations where the approach fails

although appropriate queries exist. A more involved maximal

termset method is proposed by Pôssas et al. [10]. However,

both approaches focus on finding a whole set of queries instead

of just one maximum query and neither Shapiro and Taksa nor

Pôssas et al. analyze the number of submitted queries.

II. NOTATION AND BASIC DEFINITIONS

Starting point of the query formulation process against a

Web search engine S is a set W = {w1, . . . , wn} of keywords
(it makes no difference to also allow a “keyword” to be a

complete phrase). The keywords might be given by a human

user or might be automatically generated depending on the

use case, e.g., words from the user’s queries combined with

automatically derived query expansion terms. Subsets Q ⊆W
can be submitted as Web queries (complete phrases would be

included in quotation marks). An engine’s reply to a query

Q consists of a constant length head of an exhaustive, ranked

list LQ of snippets and URLs of result documents and an

estimation lQ for the real result list length |LQ|. As for query
semantics, we adopt the usual AND notion, i.e., we require

every query keyword to be contained in the returned results.

The task of the maximum query problem is to find a query

Q having the following properties. First, lmin ≤ lQ ≤ lmax for

given constant lower and upper bounds lmin and lmax. Usually,

lmin is set to some small value like 1 or 10 and lmax will be set

to the user’s capacity, which typically is at most 100. We say

that for lQ < lmin the query Q is underflowing, whereas for

Table I
KEYWORD DOCUMENT RELATIONSHIP IN THE EXAMPLE SCENARIO.

Keyword
Document

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

w1 • • • • •

w2 • • •

w3 • • • • • • • •

w4 • • • • • •

w5 • • • • • • •

lQ > lmax it is overflowing. Queries that are neither under- nor

overflowing are valid. A valid query Q is maximal iff adding

any keyword from W \ Q results in an underflowing query.

A maximum query is a maximal query containing the most

keyphrases possible. The corresponding problem is:

MAXIMUM QUERY

Given: (1) A set W of keywords.

(2) A query interface for a Web search engine S.
(3) An upper bound lmax on the result list length.

(4) A lower bound lmin on the result list length.

Task: Find a maximum query Q ⊆W .

In our process of solving MAXIMUM QUERY we count the

overall number cost of queries that are submitted to S. As
for the runtime analysis we are interested in the time tWeb

consumed by the Web queries and the internal computation

time tlocal for the query formulation process excluding the

Web query time. Our assumption is that tWeb will clearly

dominate tlocal, i.e., tWeb ≫ tlocal.

To further explain our setting, consider the following exam-

ple scenario with the ten indexed documents d1, . . . , d10 and

the set W = {w1, . . . , w5} of keywords with the keyword

document relationship given in Table I. Note that, submitted

as a query, the set W itself will not result in any hit on

the ten document collection since none of the documents

contain all keywords. Let lmin = 3 and lmax = 4, i.e., we
are looking for subsets of the keywords that are contained

in at least 3 and at most 4 documents. Figure 1 shows the

middle levels of the possible 25 queries’ hypercube; valid

queries are shown highlighted. An example of an overflowing

query is {w3, w5} (six hits), whereas {w1, w5} is underflowing
(two hits). The family of maximal valid queries Qup =
{{w1, w3}, {w1, w4}, {w2, w3}, {w3, w4, w5}} corresponding
to Figure 1’s upper border has size 4. Note that Qup has

a unique maximum element in our example scenario—the

maximum query {w3, w4, w5}.

III. SEARCH STRATEGIES FOR MAXIMUM QUERIES

We give two algorithms to solve the MAXIMUM QUERY

problem. The first is a baseline algorithm, which is then im-

proved by informing it with a co-occurrence probability graph

that is used to internally estimate queries before submission. In

both algorithms we use the search engine’s result list length

estimations lQ, although they often overestimate the correct

lengths. However, the estimations usually respect monotony

(queries containing additional phrases have smaller l -value),
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Figure 1. Hypercube of possible queries in the example scenario.

and the shorter the result list, the better the estimations.

Hence, in the range of our result constraints (we usually have

lmax = 100 and thus are looking for maximum queries with

at most 100 results) they are quite accurate.

A. The (uninformed) baseline

A pseudocode listing of our baseline method is given as

Algorithm 1. It first removes underflowing keywords (lines 1

and 2 of the listing) because they cannot be contained in a

maximum query. Note that validity checks (lines 2, 4, 15,

and 17) are managed by submitting the query to the engine S.
A second pre-check (line 4) ensures that the remaining set

of non-underflowing keywords itself is underflowing, since

otherwise W itself is maximum or no valid query can be found

at all. The main idea of the baseline approach can then be

characterized as a depth-first search on a tree containing all

possible queries. Revisiting nodes in the tree is prohibited by

Algorithm 1 Baseline algorithm for MAXIMUM QUERY

Input: W = {w1, . . . , wn}, lmin, and lmax

Output: a maximum valid query Qmax ⊆W

1: for all w ∈W do

2: if {w} is underflowing then W ←W \ {w}

3: Qmax ← ∅
4: if W is underflowing then

5: while (W 6= ∅) ∧ (|W | > |Qmax|) do

6: w ← keyword with lowest index from W
7: W ←W \ {w}
8: ENLARGE({w}, W )

9: output Qmax

10: else output {W}

11: procedure ENLARGE(query Q, keywords Wleft)

12: while (Wleft 6= ∅) ∧ (|Q|+ |Wleft| > |Qmax|) do

13: w ← keyword with lowest index from Wleft

14: Wleft ←Wleft \ {w}
15: if Q ∪ {w} is overflowing or valid then

16: Q′ ← ENLARGE(Q ∪ {w}, Wleft)

17: if Q′ is valid and |Q′| > |Qmax| then
18: Qmax ← Q′

19: return Q

processing the keywords in the order of their indices. Hence,

the algorithm starts trying to find a maximal valid query

containing the first keyword w1. It then adds the keywords

w2, w3 etc. as long as the query remains non-underflowing. If

the query becomes underflowing, the last keyword is removed

and the next one tried. If all keywords have been tried and

the query is valid, this is the first candidate to be a maximum

query. The algorithm now backtracks to other possible paths

in the search tree. Pruning is done whenever the algorithm

excluded as many keywords as are excluded from the currently

stored maximum query. A valid query that is longer than the

maximum query so far is stored as the new maximum query.

Since this strategy causes an exhaustive search, it is guaranteed

to find a maximum query if there is one at all.

B. Co-occurrence informed improvement

A drawback of the described (uninformed) baseline is

that it submits every intermediate query candidate to the

search engine. To decrease the number of submitted Web

queries, we improve the baseline by informing it with the

keywords’ co-occurrence probabilities. A pre-processing step

of the improved version initializes a vertex and edge weighted

directed co-occurrence graph GW , storing as weights the l -

values and co-occurrence probabilities of the keywords. In our

first experiments we also submitted Web queries to derive the

weights in the graph but did not count them for the overall cost.

The rationale is that in case of substantial savings achievable

by using the graph, a very promising future research task is

initializing the graph with a local “sandbox” corpus on which

co-occurrence probability computation can be done at zero

cost (e.g., a local index of Wikipedia documents). In this paper

we show the potential of the co-occurrence graph technique

and, thus, describe initializing GW using Web queries. The

graph contains a vertex vw for each keyword w ∈ W . The

weight of vw is set to l{w}. We have two edges connecting

vertices vw and vw′ . An edge e = vw → vw′ from vw to vw′

gets as weight the yield factor γ(e) = l{w,w′}/l{w}. This factor

multiplied by the weight of vw gives the yield of Web hits

when w′ is added to w. Note that the yield factor is reminiscent

of the co-occurrence probability for the keywords w and w′.

The graph GW itself is reminiscent of a mutual information

graph. Figure 2 shows the co-occurrence graph for the example

scenario from Table I.
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Figure 2. The co-occurrence graph for the example scenario from Table I.

Using GW the algorithm can internally estimate a query

candidate; and only submit it as a Web query if really neces-

sary. Assume the current examined query is Qcand. Moreover,

assume that all queries Q from previous computation steps

have a stored value estQ indicating an estimation of the length

of their result lists. Before submitting Qcand as a Web query,

estQcand
is internally estimated as follows. Let w′ be the

last added keyword. Hence, we already have the value estQ′

for the query Q′ = Qcand \ {w′}. The algorithm now sets

estQcand
= estQ′ · avg{γ(vw → vw′) : w ∈ Q′}, where avg

denotes the mean value. Submitting Qcand as a Web query and

storing the engine’s lQcand
as estQcand

is done iff estQcand
<

5 · lmax. The adjustment factor 5 in the last inequality was

determined experimentally. If estQcand
≥ 5·lmax the algorithm

does not submit a Web query but stores the internally derived

estQcand
. This reduces the number of submitted Web queries.

Furthermore, experiments showed that usually lQ ≥ estQ such

that the co-occurrence informed approach usually does not

“miss” valid queries the uninformed baseline finds.

IV. EXPERIMENTAL ANALYSIS

We experimentally compare the co-occurrence informed

search strategy to the uninformed baseline on the known item

finding use case (cf. Section I-A). The setup is as follows: from

a given document, we extract a set of keywords and then run

both algorithms on it. Keyword extraction is managed by an

implementation of the head noun extractor described in [1].

Our document collection was obtained by crawling papers on

computer science from major conferences and journals. From

the established corpus we removed the documents for which

we were not able to extract 15 reasonable keywords. Our test

collection was formed by the 775 remaining documents. We

set the bounds lmax = 100 and lmin = 10. For each document

of the test collection we had runs of the algorithms with

3, 4, . . . , 15 extracted keywords. Note that we cannot expect

savings for 1 or 2 keywords. As a Web search engine we used

the Microsoft Bing API.

The results of our experiments can be found in Table II.

The first row states the number of processed documents from

which the respective keywords are extracted. Especially for

sets with few keywords, a maximum query often could not

be found as the complete query containing all keywords is

overflowing (cf. second row). We filter out such keyword sets

and derive the statistics (rows 4 to 14) just for the remaining

documents (number given in third row). In these cases both

algorithms always found a maximum query and the keyword

extraction source document always was among the search

engine’s returned results. Hence, maximum queries can be a

reasonable tool to handle the known item finding use case.

In rows 4 and 5 we state the average number cost of Web

queries needed to solve MAXIMUM QUERY with the informed

search approach and the uninformed baseline. The average

ratio of submitted queries of the informed approach vs. the

uninformed baseline is given in row 6 (row 4 divided by

row 5). A visualization of the ratios’ behavior is given in

Figure 3. The possible savings using a co-occurrence informed

search are substantial; up to 20% of the queries compared to

the uninformed baseline. Surprisingly, there is a huge “drop” in

the possible savings for 15 keywords as well as a huge increase

in the number of submitted queries for the informed method.

The reason probably is the following. The 15-th extracted

keyword w15 often is not as descriptive of the document’s

topic as the previous 14 are. (Note that for each document

the first 14 extracted keywords in the 15 keywords case are

identical to the extracted keywords in the 14 keywords case).

The “non-descriptiveness” of w15 causes w15’s yield factors to

be very small. Thus, many of the queries containing w15 have

an internal estimation below the informed search’s (5 · lmax)-
bound such that these queries are submitted and increase the

overall cost.

The time consumption statistics in rows 7 to 11 show the

expected behavior: The internal computation time tlocal is

orders of magnitude lower than tWeb for both approaches.

Finally, in rows 12 to 14 we report statistics on the

average size and “quality” of the generated queries. The

slightly smaller maximum queries for the informed approach

are due to some rare internal overestimations, i.e., queries

with estQ > lQ. Such overestimations potentially “hide”

some maximum queries from the informed approach but the

uninformed baseline finds them. This also results in slightly

different result sets: the ratio of URLs the informed approach’s

maximum query and the uninformed baseline’s maximum

query have in common vs. the URLs of the uninformed
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Table II
EXPERIMENTAL RESULTS.

Number of keywords

3 4 5 6 7 8 9 10 11 12 13 14 15

1 Processed documents 775 775 775 775 775 775 775 775 775 775 775 775 775

2 No maximum query possible 711 650 595 540 479 402 337 328 218 153 115 99 86

3 Maximum query found 64 125 180 235 296 373 438 447 557 622 660 676 689

4 Avg. cost informed 6.09 8.49 10.90 13.21 16.23 20.32 24.44 27.01 37.30 48.58 73.38 71.14 108.78

5 Avg. cost uninformed 6.61 9.70 12.67 15.61 18.94 24.94 29.40 30.94 43.55 56.97 87.37 90.17 116.22

6 Avg. cost ratio informed vs. uninformed 0.92 0.87 0.86 0.85 0.86 0.82 0.83 0.87 0.86 0.85 0.84 0.79 0.94

7 Avg. tlocal informed (ms) 0.45 0.69 0.95 1.05 1.49 1.89 2.85 2.90 4.41 6.04 9.31 8.67 14.44

8 Avg. tWeb informed (s) 1.57 2.18 2.75 3.41 4.14 4.97 6.91 9.11 11.01 15.28 24.42 26.18 44.04

9 Avg. tlocal uninformed (ms) 1.55 1.48 2.08 2.42 2.92 3.66 4.83 4.83 6.33 8.17 12.36 12.76 25.06

10 Avg. tWeb uninformed (s) 1.70 2.49 3.20 4.03 4.83 6.10 8.31 10.43 12.85 17.92 29.08 33.18 47.06

11 Avg. Web query time (ms) 257.96 256.64 252.28 258.01 254.82 244.52 282.63 337.09 295.07 314.61 332.77 367.98 404.86

12 Avg. size maximum query informed 1.25 2.18 3.21 4.02 4.99 5.84 6.77 7.83 8.37 8.96 9.50 10.14 10.55

13 Avg. size maximum query uninformed 1.31 2.18 3.21 4.03 5.02 5.88 6.82 7.90 8.41 8.98 9.52 10.15 10.57

14 Avg. ratio of common result URLs 0.95 0.99 0.99 0.98 0.96 0.97 0.91 0.94 0.94 0.96 0.94 0.93 0.95

baseline is given in line 14. Note that on average the informed

strategy’s maximum query only misses at most 10% of the

uninformed baseline’s URLs. This difference is rather small

and intensive spot checks showed that usually both approaches

found the same maximum query (and thus the same result set).

V. CONCLUSION AND OUTLOOK

We showed the need for a user-oriented query cost analysis

in the process of formulating maximum queries against a Web

search engine. In such situations a user “plays” against the

engine in order to satisfy her information need by submitting

keyword queries. Our formalization forms the ground for both

to define the according problem MAXIMUM QUERY and to

develop search strategies to solve it. The strategies are appli-

cable in numerous situations and the co-occurrence informed

approach should be used instead of the uninformed baseline

method as is experimentally underpinned by the substantial

savings in the number of submitted queries.

Note that our approaches can also be implemented as a

background process at search engine site. Maximum query

suggestions then could have a potential of improving user

experience in case of unsuccessful search sessions or queries

with empty result lists.

An interesting task for future work is to analyze the use of

potential “sandboxes” from which the co-occurrence probabil-

ities can be derived at zero cost. Another important issue is

to further analyze and trim the adjustment factor that helps to

decide when to submit a query to the search engine. This might

help to overcome the observed behavior in the 15 keywords

case.
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